
Package: refund (via r-universe)
September 11, 2024

Type Package

Title Regression with Functional Data

Version 0.1-35

Date 2024-02-14

Depends R (>= 3.5.0)

Imports fda, Matrix, lattice, boot, mgcv (>= 1.9), MASS, magic, nlme,
gamm4, lme4, RLRsim, splines, grpreg, ggplot2, stats, pbs,
methods

Suggests RColorBrewer, reshape2, testthat

Description Methods for regression for functional data, including
function-on-scalar, scalar-on-function, and
function-on-function regression. Some of the functions are
applicable to image data.

License GPL (>= 2)

LazyLoad yes

LazyData true

URL https://github.com/refunders/refund

BugReports https://github.com/refunders/refund/issues

Collate 'Omegas.R' 'af.R' 'af_old.R' 'amc.R' 'ccb.fpc.R'
'create.prep.func.R' 'coefficients.pfr.R' 'dt_basis.R'
'irreg2mat.R' 'fbps.R' 'fgam.R' 'fosr.R' 'fosr.perm.R'
'fosr.perm.fit.R' 'fosr.perm.test.R' 'fosr.vs.R' 'fosr2s.R'
'fpc.R' 'fpca2s.R' 'fpca.sc.R' 'fpca.face.R' 'fpca.ssvd.R'
'fpcr.R' 'fpcr.setup.R' 'lf.R' 'lf_old.R' 'lf.vd.R' 'lofocv.R'
'lpeer.R' 'lpfr.R' 'quadWeights.R' 'lw.test.R' 'osplinepen2d.R'
'parse.predict.pfr.R' 'peer.R' 'peer_old.R' 'pffr-ff.R'
'pffr-ffpc.R' 'pffr-methods.R' 'pffr-pcre.R' 'pffr-robust.R'
'pffr-sff.R' 'pffr-utilities.R' 'pffr.R' 'pfr.R' 'pfr_old.R'
'pi_basis.R' 'plot.fosr.R' 'plot.fosr.perm.R' 'plot.fosr.vs.R'
'plot.fpcr.R' 'plot.lpeer.R' 'plot.peer.R' 'plot.pfr.R'
'poridge.R' 'postprocess.pfr.R' 'predict.fgam.R'

1

https://github.com/refunders/refund
https://github.com/refunders/refund/issues

2 Contents

'predict.fosr.R' 'predict.pfr.R' 'predict.pfr_old.R'
'preprocess.pfr.R' 'pspline.setting.R' 'pwcv.R' 'summary.pfr.R'
're.R' 'rlrt.pfr.R' 'vis.fgam.R' 'predict.fosr.vs.R'
'CD4-data.R' 'content-data.R' 'COVID19-data.R' 'DTI-data.R'
'DTI2-data.R' 'PEER.Sim-data.R' 'gasoline-data.R' 'vis.pfr.R'
'GLS_CS.R' 'Gibbs_CS_FPCA.R' 'Gibbs_CS_Wish.R'
'Gibbs_Mult_FPCA.R' 'Gibbs_Mult_Wish.R' 'OLS_CS.R'
'VB_CS_FPCA.R' 'VB_CS_Wish.R' 'VB_Mult_FPCA.R' 'VB_Mult_Wish.R'
'XtSiginvX.R' 'bayes_fosr.R' 'f_sum.R' 'f_sum2.R' 'f_sum4.R'
'f_trace.R' 'mfpca.sc.R' 'mfpca.face.R' 'face.Cov.mfpca.R'
'fpca.lfda.R' 'predict.fbps.R' 'select_knots.R'

RoxygenNote 7.2.3

Encoding UTF-8

Repository https://refunders.r-universe.dev

RemoteUrl https://github.com/refunders/refund

RemoteRef HEAD

RemoteSha 3b13697891f489e19b01afbdcb0cb856f22c69ab

Contents
af . 4
af_old . 7
bayes_fosr . 10
ccb.fpc . 11
cd4 . 14
cmdscale_lanczos . 14
coef.pffr . 15
coefboot.pffr . 17
coefficients.pfr . 18
content . 20
COVID19 . 21
create.prep.func . 22
DTI . 23
DTI2 . 24
expand.call . 25
fbps . 26
ff . 28
ffpc . 30
ffpcplot . 32
fgam . 34
fosr . 36
fosr.perm . 40
fosr.vs . 43
fosr2s . 45
fpc . 46
fpca.face . 49

Contents 3

fpca.lfda . 52
fpca.sc . 59
fpca.ssvd . 63
fpca2s . 65
fpcr . 68
f_sum . 72
f_sum2 . 72
f_sum4 . 73
f_trace . 73
gasoline . 74
gibbs_cs_fpca . 75
gibbs_cs_wish . 76
gibbs_mult_fpca . 77
gibbs_mult_wish . 79
gls_cs . 80
lf . 81
lf.vd . 83
lf_old . 86
lpeer . 88
lpfr . 93
mfpca.face . 95
mfpca.sc . 97
model.matrix.pffr . 100
ols_cs . 100
pco_predict_preprocess . 101
pcre . 102
peer . 104
PEER.Sim . 106
peer_old . 107
pffr . 110
pffr.check . 114
pffrGLS . 115
pffrSim . 117
pfr . 118
pfr_old . 120
plot.fosr . 126
plot.fosr.vs . 127
plot.fpcr . 128
plot.lpeer . 130
plot.peer . 131
plot.pffr . 132
plot.pfr . 132
predict.fbps . 133
predict.fgam . 135
predict.fosr . 137
predict.fosr.vs . 138
Predict.matrix.dt.smooth . 139
Predict.matrix.fpc.smooth . 140

4 af

Predict.matrix.pcre.random.effect . 141
Predict.matrix.peer.smooth . 141
Predict.matrix.pi.smooth . 142
predict.pffr . 142
predict.pfr . 144
print.summary.pffr . 145
pwcv . 146
qq.pffr . 147
quadWeights . 148
re . 149
residuals.pffr . 149
rlrt.pfr . 150
sff . 153
smooth.construct.dt.smooth.spec . 155
smooth.construct.fpc.smooth.spec . 157
smooth.construct.pco.smooth.spec . 158
smooth.construct.pcre.smooth.spec . 161
smooth.construct.peer.smooth.spec . 162
smooth.construct.pi.smooth.spec . 163
smooth.construct.pss.smooth.spec . 164
sofa . 165
summary.pffr . 166
summary.pfr . 167
vb_cs_fpca . 168
vb_cs_wish . 169
vb_mult_fpca . 170
vb_mult_wish . 171
vis.fgam . 172
vis.pfr . 175
Xt_siginv_X . 177

Index 178

af Construct an FGAM regression term

Description

Defines a term
∫
T
F (Xi(t), t)dt for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4:::gamm)

as constructed by pfr, where F (x, t) is an unknown smooth bivariate function and Xi(t) is a func-
tional predictor on the closed interval T . See smooth.terms for a list of bivariate basis and penalty
options; the default is a tensor product basis with marginal cubic regression splines for estimating
F (x, t).

af 5

Usage

af(
X,
argvals = NULL,
xind = NULL,
basistype = c("te", "t2", "s"),
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
presmooth = NULL,
presmooth.opts = NULL,
Xrange = range(X, na.rm = T),
Qtransform = FALSE,
...

)

Arguments

X functional predictors, typically expressed as an N by J matrix, where N is the
number of columns and J is the number of evaluation points. May include miss-
ing/sparse functions, which are indicated by NA values. Alternatively, can be an
object of class "fd"; see fd.

argvals indices of evaluation of X, i.e. (ti1, ., tiJ) for subject i. May be entered as either a
length-J vector, or as an N by J matrix. Indices may be unequally spaced. Enter-
ing as a matrix allows for different observations times for each subject. If NULL,
defaults to an equally-spaced grid between 0 or 1 (or within X$basis$rangeval
if X is a fd object.)

xind same as argvals. It will not be supported in the next version of refund.

basistype defaults to "te", i.e. a tensor product spline to represent F (x, t) Alternatively,
use "s" for bivariate basis functions (see s) or "t2" for an alternative parame-
terization of tensor product splines (see t2)

integration method used for numerical integration. Defaults to "simpson"’s rule for calcu-
lating entries in L. Alternatively and for non-equidistant grids, "trapezoidal"
or "riemann".

L an optional N by ncol(argvals) matrix giving the weights for the numerical
integration over t. If present, overrides integration.

presmooth string indicating the method to be used for preprocessing functional predictor
prior to fitting. Options are fpca.sc, fpca.face, fpca.ssvd, fpca.bspline,
and fpca.interpolate. Defaults to NULL indicateing no preprocessing. See
create.prep.func.

presmooth.opts list including options passed to preprocessing method create.prep.func.

Xrange numeric; range to use when specifying the marginal basis for the x-axis. It may
be desired to increase this slightly over the default of range(X) if concerned
about predicting for future observed curves that take values outside of range(X)

Qtransform logical; should the functional be transformed using the empirical cdf and apply-
ing a quantile transformation on each column of X prior to fitting?

6 af

... optional arguments for basis and penalization to be passed to the function in-
dicated by basistype. These could include, for example, "bs", "k", "m", etc.
See te or s for details.

Value

A list with the following entries:

call a "call" to te (or s, t2) using the appropriately constructed covariate and
weight matrices.

argvals the argvals argument supplied to af

L the matrix of weights used for the integration

xindname the name used for the functional predictor variable in the formula used by mgcv

tindname the name used for argvals variable in the formula used by mgcv

Lname the name used for the L variable in the formula used by mgcv

presmooth the presmooth argument supplied to af

Xrange the Xrange argument supplied to af

prep.func a function that preprocesses data based on the preprocessing method specified
in presmooth. See create.prep.func

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com>, Fabian Scheipl, and Jonathan Gellar

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional gen-
eralized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269.
Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

See Also

pfr, lf, mgcv’s linear.functional.terms, pfr for examples

Examples

Not run:
data(DTI)
only consider first visit and cases (no PASAT scores for controls)
DTI1 <- DTI[DTI$visit==1 & DTI$case==1,]
DTI2 <- DTI1[complete.cases(DTI1),]

fit FGAM using FA measurements along corpus callosum
as functional predictor with PASAT as response
using 8 cubic B-splines for marginal bases with third
order marginal difference penalties
specifying gamma > 1 enforces more smoothing when using
GCV to choose smoothing parameters
fit1 <- pfr(pasat ~ af(cca, k=c(8,8), m=list(c(2,3), c(2,3)),

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/

af_old 7

presmooth="bspline", bs="ps"),
method="GCV.Cp", gamma=1.2, data=DTI2)

plot(fit1, scheme=2)
vis.pfr(fit1)

af term for the cca measurements plus an lf term for the rcst measurements
leave out 10 samples for prediction
test <- sample(nrow(DTI2), 10)
fit2 <- pfr(pasat ~ af(cca, k=c(7,7), m=list(c(2,2), c(2,2)), bs="ps",

presmooth="fpca.face") +
lf(rcst, k=7, m=c(2,2), bs="ps"),

method="GCV.Cp", gamma=1.2, data=DTI2[-test,])
par(mfrow=c(1,2))
plot(fit2, scheme=2, rug=FALSE)
vis.pfr(fit2, select=1, xval=.6)
pred <- predict(fit2, newdata = DTI2[test,], type='response', PredOutOfRange = TRUE)
sqrt(mean((DTI2$pasat[test] - pred)^2))

Try to predict the binary response disease status (case or control)
using the quantile transformed measurements from the rcst tract
with a smooth component for a scalar covariate that is pure noise
DTI3 <- DTI[DTI$visit==1,]
DTI3 <- DTI3[complete.cases(DTI3$rcst),]
z1 <- rnorm(nrow(DTI3))
fit3 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps",

presmooth="fpca.face", Qtransform=TRUE) +
s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)

par(mfrow=c(1,2))
plot(fit3, scheme=2, rug=FALSE)
abline(h=0, col="green")

4 versions: fit with/without Qtransform, plotted with/without Qtransform
fit4 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps",

presmooth="fpca.face", Qtransform=FALSE) +
s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)

par(mfrow=c(2,2))
zlms <- c(-7.2,4.3)
plot(fit4, select=1, scheme=2, main="QT=FALSE", zlim=zlms, xlab="t", ylab="rcst")
plot(fit4, select=1, scheme=2, Qtransform=TRUE, main="QT=FALSE", rug=FALSE,

zlim=zlms, xlab="t", ylab="p(rcst)")
plot(fit3, select=1, scheme=2, main="QT=TRUE", zlim=zlms, xlab="t", ylab="rcst")
plot(fit3, select=1, scheme=2, Qtransform=TRUE, main="QT=TRUE", rug=FALSE,

zlim=zlms, xlab="t", ylab="p(rcst)")

vis.pfr(fit3, select=1, plot.type="contour")

End(Not run)

af_old Construct an FGAM regression term

8 af_old

Description

Defines a term
∫
T
F (Xi(t), t)dt for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4:::gamm)

as constructed by fgam, where F (x, t)$ is an unknown smooth bivariate function and Xi(t) is a
functional predictor on the closed interval T . Defaults to a cubic tensor product B-spline with
marginal second-order difference penalties for estimating F (x, t). The functional predictor must be
fully observed on a regular grid

Usage

af_old(
X,
argvals = seq(0, 1, l = ncol(X)),
xind = NULL,
basistype = c("te", "t2", "s"),
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
splinepars = list(bs = "ps", k = c(min(ceiling(nrow(X)/5), 20), min(ceiling(ncol(X)/5),

20)), m = list(c(2, 2), c(2, 2))),
presmooth = TRUE,
Xrange = range(X),
Qtransform = FALSE

)

Arguments

X an N by J=ncol(argvals) matrix of function evaluations Xi(ti1), ., Xi(tiJ); i =
1, ., N.

argvals matrix (or vector) of indices of evaluations of Xi(t); i.e. a matrix with ith row
(ti1, ., tiJ)

xind Same as argvals. It will discard this argument in the next version of refund.

basistype defaults to "te", i.e. a tensor product spline to represent F (x, t) Alternatively,
use "s" for bivariate basis functions (see s) or "t2" for an alternative parame-
terization of tensor product splines (see t2)

integration method used for numerical integration. Defaults to "simpson"’s rule for calcu-
lating entries in L. Alternatively and for non-equidistant grids, "trapezoidal"
or "riemann". "riemann" integration is always used if L is specified

L optional weight matrix for the linear functional

splinepars optional arguments specifying options for representing and penalizing the func-
tion F (x, t). Defaults to a cubic tensor product B-spline with marginal second-
order difference penalties, i.e. list(bs="ps", m=list(c(2, 2), c(2, 2)), see
te or s for details

presmooth logical; if true, the functional predictor is pre-smoothed prior to fitting; see
smooth.basisPar

Xrange numeric; range to use when specifying the marginal basis for the x-axis. It may
be desired to increase this slightly over the default of range(X) if concerned
about predicting for future observed curves that take values outside of range(X)

af_old 9

Qtransform logical; should the functional be transformed using the empirical cdf and apply-
ing a quantile transformation on each column of X prior to fitting? This ensures
Xrange=c(0,1). If Qtransform=TRUE and presmooth=TRUE, presmoothing is
done prior to transforming the functional predictor

Value

A list with the following entries:

1. call - a "call" to te (or s, t2) using the appropriately constructed covariate and weight
matrices.

2. argvals - the argvals argument supplied to af

3. L-the matrix of weights used for the integration

4. xindname - the name used for the functional predictor variable in the formula used by mgcv.

5. tindname - the name used for argvals variable in the formula used by mgcv

6. Lname - the name used for the L variable in the formula used by mgcv

7. presmooth - the presmooth argument supplied to af

8. Qtranform - the Qtransform argument supplied to af

9. Xrange - the Xrange argument supplied to af

10. ecdflist - a list containing one empirical cdf function from applying ecdf to each (possibly
presmoothed) column of X. Only present if Qtransform=TRUE

11. Xfd - an fd object from presmoothing the functional predictors using smooth.basisPar. Only
present if presmooth=TRUE. See fd.

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional gen-
eralized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269.
Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

See Also

fgam, lf, mgcv’s linear.functional.terms, fgam for examples

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/

10 bayes_fosr

bayes_fosr Bayesian Function-on-scalar regression

Description

Wrapper function that implements several approaches to Bayesian function- on-scalar regression.
Currently handles real-valued response curves; models can include subject-level random effects in
a multilevel framework. The residual curve error structure can be estimated using Bayesian FPCA
or a Wishart prior. Model parameters can be estimated using a Gibbs sampler or variational Bayes.

Usage

bayes_fosr(formula, data = NULL, est.method = "VB", cov.method = "FPCA", ...)

Arguments

formula a formula indicating the structure of the proposed model. Random intercepts are
designated using re().

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

est.method method used to estimate model parameters. Options are "VB", "Gibbs", and
"GLS" with "VB" as default. Variational Bayes is a fast approximation to the
full posterior and often provides good point estimates, but may be unreliable for
inference. "GLS" doesn’t do anything Bayesian – just fits an unpenalized GLS
estimator for the specified model.

cov.method method used to estimate the residual covariance structure. Options are "FPCA"
and "Wishart", with default "FPCA"

... additional arguments that are passed to individual fitting functions.

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

Examples

Not run:

library(reshape2)
library(dplyr)
library(ggplot2)

ccb.fpc 11

Cross-sectional real-data examples

organize data
data(DTI)
DTI = subset(DTI, select = c(cca, case, pasat))
DTI = DTI[complete.cases(DTI),]
DTI$gender = factor(sample(c("male","female"), dim(DTI)[1], replace = TRUE))
DTI$status = factor(sample(c("RRMS", "SPMS", "PPMS"), dim(DTI)[1], replace = TRUE))

fit models
default = bayes_fosr(cca ~ pasat, data = DTI)
VB = bayes_fosr(cca ~ pasat, data = DTI, Kp = 4, Kt = 10)
Gibbs = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "Gibbs", cov.method = "Wishart",

N.iter = 500, N.burn = 200)
OLS = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "OLS")
GLS = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "GLS")

plot results
models = c("default", "VB", "Gibbs", "OLS", "GLS")
intercepts = sapply(models, function(u) get(u)$beta.hat[1,])
slopes = sapply(models, function(u) get(u)$beta.hat[2,])

plot.dat = melt(intercepts); colnames(plot.dat) = c("grid", "method", "value")
ggplot(plot.dat, aes(x = grid, y = value, group = method, color = method)) +

geom_path() + theme_bw()

plot.dat = melt(slopes); colnames(plot.dat) = c("grid", "method", "value")
ggplot(plot.dat, aes(x = grid, y = value, group = method, color = method)) +

geom_path() + theme_bw()

fit a model with an interaction
fosr.dti.interaction = bayes_fosr(cca ~ pasat*gender, data = DTI, Kp = 4, Kt = 10)

Longitudinal real-data examples

data(DTI2)
class(DTI2$cca) = class(DTI2$cca)[-1]
DTI2 = subset(DTI2, select = c(cca, id, pasat))
DTI2 = DTI2[complete.cases(DTI2),]

default = bayes_fosr(cca ~ pasat + re(id), data = DTI2)
VB = bayes_fosr(cca ~ pasat + re(id), data = DTI2, Kt = 10, cov.method = "Wishart")

End(Not run)

ccb.fpc Corrected confidence bands using functional principal components

12 ccb.fpc

Description

Uses iterated expectation and variances to obtain corrected estimates and inference for functional
expansions.

Usage

ccb.fpc(
Y,
argvals = NULL,
nbasis = 10,
pve = 0.99,
n.boot = 100,
simul = FALSE,
sim.alpha = 0.95

)

Arguments

Y matrix of observed functions for which estimates and covariance matrices are
desired.

argvals numeric; function argument.

nbasis number of splines used in the estimation of the mean function and the bivariate
smoothing of the covariance matrix

pve proportion of variance explained used to choose the number of principal com-
ponents to be included in the expansion.

n.boot number of bootstrap iterations used to estimate the distribution of FPC decom-
position objects.

simul TRUE or FALSE, indicating whether critical values for simultaneous confidence
intervals should be estimated

sim.alpha alpha level of the simultaneous intervals.

Details

To obtain corrected curve estimates and variances, this function accounts for uncertainty in FPC
decomposition objects. Observed curves are resampled, and a FPC decomposition for each sample
is constructed. A mixed-model framework is used to estimate curves and variances conditional
on each decomposition, and iterated expectation and variances combines both model-based and
decomposition-based uncertainty.

Value

Yhat a matrix whose rows are the estimates of the curves in Y.

Yhat.boot a list containing the estimated curves within each bootstrap iteration.

diag.var diagonal elements of the covariance matrices for each estimated curve.

VarMats a list containing the estimated covariance matrices for each curve in Y.

crit.val estimated critical values for constructing simultaneous confidence intervals.

ccb.fpc 13

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

References

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional
data using principal components. Biometrics, 69(1), 41–51.

Examples

Not run:
data(cd4)

obtain a subsample of the data with 25 subjects
set.seed(1236)
sample = sample(1:dim(cd4)[1], 25)
Y.sub = cd4[sample,]

obtain a mixed-model based FPCA decomposition
Fit.MM = fpca.sc(Y.sub, var = TRUE, simul = TRUE)

use iterated variance to obtain curve estimates and variances
Fit.IV = ccb.fpc(Y.sub, n.boot = 25, simul = TRUE)

for one subject, examine curve estimates, pointwise and simultaneous itervals
EX = 2
EX.IV = cbind(Fit.IV$Yhat[EX,],

Fit.IV$Yhat[EX,] + 1.96 * sqrt(Fit.IV$diag.var[EX,]),
Fit.IV$Yhat[EX,] - 1.96 * sqrt(Fit.IV$diag.var[EX,]),
Fit.IV$Yhat[EX,] + Fit.IV$crit.val[EX] * sqrt(Fit.IV$diag.var[EX,]),
Fit.IV$Yhat[EX,] - Fit.IV$crit.val[EX] * sqrt(Fit.IV$diag.var[EX,]))

EX.MM = cbind(Fit.MM$Yhat[EX,],
Fit.MM$Yhat[EX,] + 1.96 * sqrt(Fit.MM$diag.var[EX,]),
Fit.MM$Yhat[EX,] - 1.96 * sqrt(Fit.MM$diag.var[EX,]),
Fit.MM$Yhat[EX,] + Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]),
Fit.MM$Yhat[EX,] - Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]))

plot data for one subject, with curve and interval estimates
d = as.numeric(colnames(cd4))
plot(d[which(!is.na(Y.sub[EX,]))], Y.sub[EX,which(!is.na(Y.sub[EX,]))], type = 'o',

pch = 19, cex=.75, ylim = range(0, 3400), xlim = range(d),
xlab = "Months since seroconversion", lwd = 1.2, ylab = "Total CD4 Cell Count",

main = "Est. & CI - Sampled Data")

matpoints(d, EX.IV, col = 2, type = 'l', lwd = c(2, 1, 1, 1, 1), lty = c(1,1,1,2,2))
matpoints(d, EX.MM, col = 4, type = 'l', lwd = c(2, 1, 1, 1, 1), lty = c(1,1,1,2,2))

legend("topright", c("IV Est", "IV PW Int", "IV Simul Int",
expression(paste("MM - ", hat(theta), " Est", sep = "")),
expression(paste("MM - ", hat(theta), " PW Int", sep = "")),
expression(paste("MM - ", hat(theta), " Simul Int", sep = ""))),

14 cmdscale_lanczos

lty=c(1,1,2,1,1,2), lwd = c(2.5,.75,.75,2.5,.75,.75),
col = c("red","red","red","blue","blue","blue"))

End(Not run)

cd4 Observed CD4 cell counts

Description

CD4 cell counts for 366 subjects between months -18 and 42 since seroconversion. Each subject’s
observations are contained in a single row.

Format

A data frame made up of a 366 x 61 matrix of CD4 cell counts

References

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional
data using principal components. Biometrics, 69(1), 41–51.

cmdscale_lanczos Faster multi-dimensional scaling

Description

This is a modified version of cmdscale that uses the Lanczos procedure (slanczos) instead of
eigen. Called by smooth.construct.pco.smooth.spec.

Usage

cmdscale_lanczos(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE)

Arguments

d a distance structure as returned by dist, or a full symmetric matrix of distances
or dissimilarities.

k the maximum dimension of the space which the data are to be represented in;
must be in {1, 2, ..., n-1}.

eig logical indicating whether eigenvalues should be returned.

add logical indicating if the additive constant of Cailliez (1983) should be computed,
and added to the non-diagonal dissimilarities such that the modified dissimilari-
ties are Euclidean.

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

coef.pffr 15

Value

as cmdscale

Author(s)

David L Miller, based on code by R Core.

References

Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48,
343-349.

See Also

smooth.construct.pco.smooth.spec

coef.pffr Get estimated coefficients from a pffr fit

Description

Returns estimated coefficient functions/surfaces β(t), β(s, t) and estimated smooth effects f(z), f(x, z)
or f(x, z, t) and their point-wise estimated standard errors. Not implemented for smooths in more
than 3 dimensions.

Usage

S3 method for class 'pffr'
coef(
object,
raw = FALSE,
se = TRUE,
freq = FALSE,
sandwich = FALSE,
seWithMean = TRUE,
n1 = 100,
n2 = 40,
n3 = 20,
Ktt = NULL,
...

)

16 coef.pffr

Arguments

object a fitted pffr-object

raw logical, defaults to FALSE. If TRUE, the function simply returns object$coefficients

se logical, defaults to TRUE. Return estimated standard error of the estimates?

freq logical, defaults to FALSE. If FALSE, use posterior variance object$Vp for
variability estimates, else use object$Ve. See gamObject

sandwich logical, defaults to FALSE. Use a Sandwich-estimator for approximate vari-
ances? See Details. THIS IS AN EXPERIMENTAL FEATURE, USE A YOUR
OWN RISK.

seWithMean logical, defaults to TRUE. Include uncertainty about the intercept/overall mean
in standard errors returned for smooth components?

n1 see below

n2 see below

n3 n1, n2, n3 give the number of gridpoints for 1-/2-/3-dimensional smooth terms
used in the marginal equidistant grids over the range of the covariates at which
the estimated effects are evaluated.

Ktt (optional) an estimate of the covariance operator of the residual process ϵi(t) ∼
N(0,K(t, t′)), evaluated on yind of object. If not supplied, this is estimated
from the crossproduct matrices of the observed residual vectors. Only relevant
for sandwich CIs.

... other arguments, not used.

Details

The seWithMean-option corresponds to the "iterms"-option in predict.gam. The sandwich-
options works as follows: Assuming that the residual vectors ϵi(t), i = 1, . . . , n are i.i.d. real-
izations of a mean zero Gaussian process with covariance K(t, t′), we can construct an estimator
for K(t, t′) from the n replicates of the observed residual vectors. The covariance matrix of the
stacked observations vec(Yi(t)) is then given by a block-diagonal matrix with n copies of the es-
timated K(t, t′) on the diagonal. This block-diagonal matrix is used to construct the "meat" of a
sandwich covariance estimator, similar to Chen et al. (2012), see reference below.

Value

If raw==FALSE, a list containing

• pterms a matrix containing the parametric / non-functional coefficients (and, optionally, their
se’s)

• smterms a named list with one entry for each smooth term in the model. Each entry contains

– coef a matrix giving the grid values over the covariates, the estimated effect (and, op-
tionally, the se’s). The first covariate varies the fastest.

– x, y, z the unique gridpoints used to evaluate the smooth/coefficient function/coefficient
surface

– xlim, ylim, zlim the extent of the x/y/z-axes
– xlab, ylab, zlab the names of the covariates for the x/y/z-axes

coefboot.pffr 17

– dim the dimensionality of the effect
– main the label of the smooth term (a short label, same as the one used in summary.pffr)

Author(s)

Fabian Scheipl

References

Chen, H., Wang, Y., Paik, M.C., and Choi, A. (2013). A marginal approach to reduced-rank pe-
nalized spline smoothing with application to multilevel functional data. Journal of the American
Statistical Association, 101, 1216–1229.

See Also

plot.gam, predict.gam which this routine is based on.

coefboot.pffr Simple bootstrap CIs for pffr

Description

This function resamples observations in the data set to obtain approximate CIs for different terms
and coefficient functions that correct for the effects of dependency and heteroskedasticity of the
residuals along the index of the functional response, i.e., it aims for correct inference if the residuals
along the index of the functional response are not i.i.d.

Usage

coefboot.pffr(
object,
n1 = 100,
n2 = 40,
n3 = 20,
B = 100,
ncpus = getOption("boot.ncpus", 1),
parallel = c("no", "multicore", "snow"),
cl = NULL,
conf = c(0.9, 0.95),
type = "percent",
method = c("resample", "residual", "residual.c"),
showProgress = TRUE,
...

)

18 coefficients.pfr

Arguments

object a fitted pffr-model

n1 see coef.pffr

n2 see coef.pffr

n3 see coef.pffr

B number of bootstrap replicates, defaults to (a measly) 100

ncpus see boot. Defaults to getOption("boot.ncpus", 1L) (like boot).

parallel see boot

cl see boot

conf desired levels of bootstrap CIs, defaults to 0.90 and 0.95

type type of bootstrap interval, see boot.ci. Defaults to "percent" for percentile-
based CIs.

method either "resample" (default) to resample response trajectories, or "residual" to
resample responses as fitted values plus residual trajectories or "residual.c" to
resample responses as fitted values plus residual trajectories that are centered at
zero for each gridpoint.

showProgress TRUE/FALSE

... not used

Value

a list with similar structure as the return value of coef.pffr, containing the original point estimates
of the various terms along with their bootstrap CIs.

Author(s)

Fabian Scheipl

coefficients.pfr Extract coefficient functions from a fitted pfr-object

Description

This function is used to extract a coefficient from a fitted ‘pfr‘ model, in particular smooth functions
resulting from including functional terms specified with lf, af, etc. It can also be used to extract
smooths genereated using mgcv’s s, te, or t2.

coefficients.pfr 19

Usage

S3 method for class 'pfr'
coefficients(
object,
select = 1,
coords = NULL,
n = NULL,
se = ifelse(length(object$smooth) & select, TRUE, FALSE),
seWithMean = FALSE,
useVc = TRUE,
Qtransform = FALSE,
...

)

S3 method for class 'pfr'
coef(
object,
select = 1,
coords = NULL,
n = NULL,
se = ifelse(length(object$smooth) & select, TRUE, FALSE),
seWithMean = FALSE,
useVc = TRUE,
Qtransform = FALSE,
...

)

Arguments

object return object from pfr

select integer indicating the index of the desired smooth term in object$smooth. En-
ter 0 to request the raw coefficients (i.e., object$coefficients) and standard
errors (if se==TRUE).

coords named list indicating the desired coordinates where the coefficient function is to
be evaluated. Names must match the argument names in object$smooth[[select]]$term.
If NULL, uses n to generate equally-spaced coordinates.

n integer vector indicating the number of equally spaced coordinates for each ar-
gument. If length 1, the same number is used for each argument. Otherwise, the
length must match object$smooth[[select]]$dim.

se if TRUE, returns pointwise standard error estimates. Defaults to FALSE if raw
coefficients are being returned; otherwise TRUE.

seWithMean if TRUE the standard errors include uncertainty about the overall mean; if FALSE,
they relate purely to the centered smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance for GAMs.

useVc if TRUE, standard errors are calculated using a covariance matrix that has been
corrected for smoothing parameter uncertainty. This matrix will only be avail-
able under ML or REML smoothing.

20 content

Qtransform For additive functional terms, TRUE indicates the coefficient should be extracted
on the quantile-transformed scale, whereas FALSE indicates the scale of the orig-
inal data. Note this is different from the Qtransform arguemnt of af, which
specifies the scale on which the term is fit.

... these arguments are ignored

Value

a data frame containing the evaluation points, coefficient function values and optionally the SE’s
for the term indicated by select.

Author(s)

Jonathan Gellar and Fabian Scheipl

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

content The CONTENT child growth study

Description

The CONTENT child growth study was funded by the Sixth Framework Programme of the Eu-
ropean Union, Project CONTENT (INCO-DEV-3-032136) and was led by Dr. William Checkley.
The study was conducted between May 2007 and February 2011 in Las Pampas de San Juan Mi-
raflores and Nuevo Paraiso, two peri-urban shanty towns with high population density located on
the southern edge of Lima city in Peru.

Usage

data(content)

Format

A list made up of

id Numeric vector of subject ID numbers;

ma1fe0 Numeric vector of the sex of the child, 1 for male and 0 for female;

weightkg Numeric vector of the weight of the child measured in kilograms(kg);

height Numeric vector of the height of the child measured in centimeters;

agedays Numeric vector of the age of the child measured in days;

cbmi Numeric vector of the BMI of the child;

zlen Numeric vector of the height-for-age z-scores;

COVID19 21

zwei Numeric vector of the weight-for-age z-scores;

zwfl Numeric vector of the weight-for-height z-scores;

zbmi Numeric vector of the BMI-for-age z-scores;

References

Crainiceanu, C., Goldsmith, J., Leroux, A., Cui, E. (2023). Functional Data Analysis with R.
Chapman & Hall/CRC Statistics

COVID19 The US weekly all-cause mortality and COVID19-associated deaths in
2020

Description

The COVID19 mortality data used in the "Functional Data Analysis with R" book

Usage

data(COVID19)

Format

A list made up of

US_weekly_mort A numeric vector of length 207, which contains the total number of weekly
all-cause deaths in the US from January 14, 2017 to December 26, 2020;

US_weekly_mort_dates A vector of dates of length 207, which contains the weeks corresponding
to the US_weekly_mort vector;

US_weekly_mort_CV19 A numeric vector of length 52, which contains the total number of weekly
COVID 19 deaths in the US from January 4, 2020 to December 26, 2020;

US_weekly_mort_CV19_dates A vector of dates of length 52, which contains the weeks corre-
sponding to the US_weekly_mort_CV19 vector;

US_weekly_excess_mort_2020 A numeric vector of length 52, which contains the US weekly ex-
cess mortality (total mortality in one week in 2020 minus total mortality in the corresponding
week of 2019) from January 4, 2020 to December 26, 2020;

US_weekly_excess_mort_2020_dates A vector dates of length 52, which contains the weeks cor-
responding to the US_weekly_excess_mort_2020 vector.;

US_states_names A vector of strings containing the names of 52 US states and territories in al-
phabetic order. These are the states for which all-cause and Covid-19 data are available in this
data set;

US_states_population A numeric vector containing the population of the 52 states in the vector
US_states_names estimated as of July 1, 2020. The order of the vector US_states_population
is the same as that of US_states_names;

22 create.prep.func

States_excess_mortality A numeric 52 x 52 dimensional matrix that contains the weekly US ex-
cess mortality in 52 states and territories. Each row corresponds to one state in the same order
as the vector US_states_names. Each column corresponds to a week in 2020 corresponding to
the order in the vector US_weekly_excess_mort_2020_dates. The (i,j)th entry of the matrix is
the difference in all-cause mortality during the week j of 2020 and 2019 for state i;

States_excess_mortality_per_million A numeric 52 x 52 dimensional matrix that contains the
weekly US excess mortality in 52 states and territories per one million individuals. This is
obtained by dividing every row (corresponding to a state) of States_excess_mortality by the
population of that state stored in US_states_population and multiplying by one million;

States_CV19_mortality A numeric 52 x 52 dimensional matrix that contains the weekly US
Covid-19 mortality in 52 states and territories. Each row corresponds to one state in the
same order as the vector US_states_names. Each column corresponds to a week in 2020
corresponding to the order in the vector US_weekly_excess_mort_2020_dates;

States_CV19_mortality_per_million A numeric 52 x 52 dimensional matrix that contains the
weekly US Covid-19 mortality in 52 states and territories per one million individuals. This
is obtained by dividing every row (corresponding to a state) of States_CV19_mortality by the
population of that state stored in US_states_population and multiplying by one million.

References

Crainiceanu, C., Goldsmith, J., Leroux, A., Cui, E. (2023). Functional Data Analysis with R.
Chapman & Hall/CRC Statistics

create.prep.func Construct a function for preprocessing functional predictors

Description

Prior to using functions X as predictors in a scalar-on-function regression, it is often necessary to
presmooth curves to remove measurement error or interpolate to a common grid. This function
creates a function to do this preprocessing depending on the method specified.

Usage

create.prep.func(
X,
argvals = seq(0, 1, length = ncol(X)),
method = c("fpca.sc", "fpca.face", "fpca.ssvd", "bspline", "interpolate"),
options = NULL

)

Arguments

X an N by J=ncol(argvals) matrix of function evaluations Xi(ti1), ., Xi(tiJ); i =
1, ., N. For FPCA-based processing methods, these functions are used to define
the eigen decomposition used to preprocess current and future data (for example,
in predict.pfr)

DTI 23

argvals matrix (or vector) of indices of evaluations of Xi(t); i.e. a matrix with ith row
(ti1, ., tiJ)

method character string indicating the preprocessing method. Options are "fpca.sc",
"fpca.face", "fpca.ssvd", "bspline", and "interpolate". The first three
use the corresponding existing function; "bspline" uses an (unpenalized) cu-
bic bspline smoother with nbasis basis functions; "interpolate" uses linear
interpolation.

options list of options passed to the preprocessing method; as an example, options for
fpca.sc include pve, nbasis, and npc.

Value

a function that returns the preprocessed functional predictors, with arguments

newX The functional predictors to process
argvals. Indices of evaluation of newX
options. Any options needed to preprocess the predictor functions

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

See Also

pfr, fpca.sc, fpca.face, fpca.ssvd

DTI Diffusion Tensor Imaging: tract profiles and outcomes

Description

Fractional anisotropy (FA) tract profiles for the corpus callosum (cca) and the right corticospinal
tract (rcst). Accompanying the tract profiles are the subject ID numbers, visit number, total number
of scans, multiple sclerosis case status and Paced Auditory Serial Addition Test (pasat) score.

Format

A data frame made up of

cca A 382 x 93 matrix of fractional anisotropy tract profiles from the corpus callosum;
rcst A 382 x 55 matrix of fractional anisotropy tract profiles from the right corticospinal tract;
ID Numeric vector of subject ID numbers;
visit Numeric vector of the subject-specific visit numbers;
visit.time Numeric vector of the subject-specific visit time, measured in days since first visit;
Nscans Numeric vector indicating the total number of visits for each subject;
case Numeric vector of multiple sclerosis case status: 0 - healthy control, 1 - MS case;
sex factor variable indicated subject’s sex;
pasat Numeric vector containing the PASAT score at each visit.

24 DTI2

Details

If you use this data as an example in written work, please include the following acknowledgment:
“The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute"

DTI2 uses mean diffusivity of the the corpus callosum rather than FA, and parallel diffusivity of the
rcst rather than FA. Please see the documentation for DTI2.

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized Functional
Regression. Journal of Computational and Graphical Statistics, 20, 830 - 851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2010). Longitudinal Penalized Func-
tional Regression for Cognitive Outcomes on Neuronal Tract Measurements. Journal of the Royal
Statistical Society: Series C, 61, 453 - 469.

DTI2 Diffusion Tensor Imaging: more fractional anisotropy profiles and out-
comes

Description

A diffusion tensor imaging dataset used in Swihart et al. (2012). Mean diffusivity profiles for the
corpus callosum (cca) and parallel diffusivity for the right corticospinal tract (rcst). Accompanying
the profiles are the subject ID numbers, visit number, and Paced Auditory Serial Addition Test
(pasat) score. We thank Dr. Daniel Reich for making this dataset available.

Format

A data frame made up of

cca a 340 x 93 matrix of fractional anisotropy profiles from the corpus callosum;

rcst a 340 x 55 matrix of fractional anisotropy profiles from the right corticospinal tract;

id numeric vector of subject ID numbers;

visit numeric vector of the subject-specific visit numbers;

pasat numeric vector containing the PASAT score at each visit.

Details

If you use this data as an example in written work, please include the following acknowledgment:
“The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute"

Note: DTI2 uses mean diffusivity of the the corpus callosum rather than fractional anisotropy (FA),
and parallel diffusivity of the rcst rather than FA. Please see the documentation for DTI for more
about the DTI dataset.

expand.call 25

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional
regression. Journal of Computational and Graphical Statistics, 20(4), 830–851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional
regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical
Society: Series C, 61(3), 453–469.

Swihart, B. J., Goldsmith, J., and Crainiceanu, C. M. (2014). Restricted Likelihood Ratio Tests for
Functional Effects in the Functional Linear Model. Technometrics, 56, 483–493.

expand.call Return call with all possible arguments

Description

Return a call in which all of the arguments which were supplied or have presets are specified by
their full names and their supplied or default values.

Usage

expand.call(
definition = NULL,
call = sys.call(sys.parent(1)),
expand.dots = TRUE

)

Arguments

definition a function. See match.call.

call an unevaluated call to the function specified by definition. See match.call.

expand.dots logical. Should arguments matching ... in the call be included or left as a ...
argument? See match.call.

Value

An object of mode "call".

Author(s)

Fabian Scheipl

See Also

match.call

26 fbps

fbps Sandwich smoother for matrix data

Description

A fast bivariate P-spline method for smoothing matrix data.

Usage

fbps(
data,
subj = NULL,
covariates = NULL,
knots = 35,
knots.option = "equally-spaced",
periodicity = c(FALSE, FALSE),
p = 3,
m = 2,
lambda = NULL,
selection = "GCV",
search.grid = T,
search.length = 100,
method = "L-BFGS-B",
lower = -20,
upper = 20,
control = NULL

)

Arguments

data n1 by n2 data matrix without missing data

subj vector of subject id (corresponding to the columns of data); defaults to NULL

covariates list of two vectors of covariates of lengths n1 and n2; if NULL, then generates
equidistant covariates

knots list of two vectors of knots or number of equidistant knots for all dimensions;
defaults to 35

knots.option knot selection method; defaults to "equally-spaced"

periodicity vector of two logical, indicating periodicity in the direction of row and column;
defaults to c(FALSE, FALSE)

p degrees of B-splines; defaults to 3

m order of differencing penalty; defaults to 2

lambda user-specified smoothing parameters; defaults to NULL

selection selection of smoothing parameter; defaults to "GCV"

search.grid logical; defaults to TRUE, if FALSE, uses optim

fbps 27

search.length number of equidistant (log scale) smoothing parameter; defaults to 100

method see optim; defaults to L-BFGS-B

lower, upper bounds for log smoothing parameter, passed to optim; defaults are -20 and 20.

control see optim

Details

The smoothing parameter can be user-specified; otherwise, the function uses grid searching method
or optim for selecting the smoothing parameter.

Value

A list with components

lambda vector of length 2 of selected smoothing parameters

Yhat fitted data

trace trace of the overall smoothing matrix

gcv value of generalized cross validation

Theta matrix of estimated coefficients

Author(s)

Luo Xiao <lxiao@jhsph.edu>

References

Xiao, L., Li, Y., and Ruppert, D. (2013). Fast bivariate P-splines: the sandwich smoother. Journal
of the Royal Statistical Society: Series B, 75(3), 577–599.

Examples

##########################
True function
##########################
n1 <- 60
n2 <- 80
x <- (1:n1)/n1-1/2/n1
z <- (1:n2)/n2-1/2/n2
MY <- array(0,c(length(x),length(z)))

sigx <- .3
sigz <- .4
for(i in 1:length(x))
for(j in 1:length(z))
{
#MY[i,j] <- .75/(pi*sigx*sigz) *exp(-(x[i]-.2)^2/sigx^2-(z[j]-.3)^2/sigz^2)
#MY[i,j] <- MY[i,j] + .45/(pi*sigx*sigz) *exp(-(x[i]-.7)^2/sigx^2-(z[j]-.8)^2/sigz^2)
MY[i,j] = sin(2*pi*(x[i]-.5)^3)*cos(4*pi*z[j])
}

28 ff

##########################
Observed data
##########################
sigma <- 1
Y <- MY + sigma*rnorm(n1*n2,0,1)
##########################
Estimation
##########################

est <- fbps(Y,list(x=x,z=z))
mse <- mean((est$Yhat-MY)^2)
cat("mse of fbps is",mse,"\n")
cat("The smoothing parameters are:",est$lambda,"\n")
##
########## Compare the estimated surface with the true surface #########
##

par(mfrow=c(1,2))
persp(x,z,MY,zlab="f(x,z)",zlim=c(-1,2.5), phi=30,theta=45,expand=0.8,r=4,

col="blue",main="True surface")
persp(x,z,est$Yhat,zlab="f(x,z)",zlim=c(-1,2.5),phi=30,theta=45,

expand=0.8,r=4,col="red",main="Estimated surface")

ff Construct a function-on-function regression term

Description

Defines a term
∫ shi,i

slo,i
Xi(s)β(t, s)ds for inclusion in an mgcv::gam-formula (or bam or gamm or

gamm4:::gamm4) as constructed by pffr.
Defaults to a cubic tensor product B-spline with marginal first order differences penalties for β(t, s)
and numerical integration over the entire range [slo,i, shi,i] = [min(si),max(si)] by using Simpson
weights. Can’t deal with any missing X(s), unequal lengths of Xi(s) not (yet?) possible. Unequal
integration ranges for different Xi(s) should work. Xi(s) is assumed to be numeric (duh...).

Usage

ff(
X,
yind = NULL,
xind = seq(0, 1, l = ncol(X)),
basistype = c("te", "t2", "ti", "s", "tes"),
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
limits = NULL,
splinepars = if (basistype != "s") {

list(bs = "ps", m = list(c(2, 1), c(2, 1)), k
= c(5, 5))

} else {

ff 29

list(bs = "tp", m = NA)
},
check.ident = TRUE

)

Arguments

X an n by ncol(xind) matrix of function evaluations Xi(si1), . . . , Xi(siS); i =
1, . . . , n.

yind DEPRECATED used to supply matrix (or vector) of indices of evaluations of
Yi(t), no longer used.

xind vector of indices of evaluations of Xi(s), i.e, (s1, . . . , sS)

basistype defaults to "te", i.e. a tensor product spline to represent β(t, s). Alternatively,
use "s" for bivariate basis functions (see mgcv’s s) or "t2" for an alternative
parameterization of tensor product splines (see mgcv’s t2).

integration method used for numerical integration. Defaults to "simpson"’s rule for calcu-
lating entries in L. Alternatively and for non-equidistant grids, "trapezoidal"
or "riemann". "riemann" integration is always used if limits is specified

L optional: an n by ncol(xind) matrix giving the weights for the numerical inte-
gration over s.

limits defaults to NULL for integration across the entire range of X(s), otherwise
specifies the integration limits shi(t), slo(t): either one of "s<t" or "s<=t" for
(shi(t), slo(t)) = (t, 0] or [t, 0], respectively, or a function that takes s as the
first and t as the second argument and returns TRUE for combinations of values
(s,t) if s falls into the integration range for the given t. This is an experimental
feature and not well tested yet; use at your own risk.

splinepars optional arguments supplied to the basistype-term. Defaults to a cubic tensor
product B-spline with marginal first difference penalties, i.e. list(bs="ps",
m=list(c(2, 1), c(2,1))). See te or s in mgcv for details

check.ident check identifiability of the model spec. See Details and References. Defaults to
TRUE.

Details

If check.ident==TRUE and basistype!="s" (the default), the routine checks conditions for non-
identifiability of the effect. This occurs if a) the marginal basis for the functional covariate is
rank-deficient (typically because the functional covariate has lower rank than the spline basis along
its index) and simultaneously b) the kernel of Cov(X(s)) is not disjunct from the kernel of the
marginal penalty over s. In practice, a) occurs quite frequently, and b) occurs usually because
curve-wise mean centering has removed all constant components from the functional covariate.
If there is kernel overlap, β(t, s) is constrained to be orthogonal to functions in that overlap space
(e.g., if the overlap contains constant functions, constraints "

∫
β(t, s)ds = 0 for all t" are enforced).

See reference for details.
A warning is always given if the effective rank of Cov(X(s)) (defined as the number of eigenvalues
accounting for at least 0.995 of the total variance in Xi(s)) is lower than 4. If Xi(s) is of very low
rank, ffpc-term may be preferable.

30 ffpc

Value

A list containing

call a "call" to te (or s or t2) using the appropriately constructed covariate and
weight matrices

data a list containing the necessary covariate and weight matrices

Author(s)

Fabian Scheipl, Sonja Greven

References

For background on check.ident:
Scheipl, F., Greven, S. (2016). Identifiability in penalized function-on-function regression mod-
els. Electronic Journal of Statistics, 10(1), 495–526. https://projecteuclid.org/journals/
electronic-journal-of-statistics/volume-10/issue-1/Identifiability-in-penalized-function-on-function-regression-models/
10.1214/16-EJS1123.full

See Also

mgcv’s linear.functional.terms

ffpc Construct a PC-based function-on-function regression term

Description

Defines a term
∫
Xi(s)β(t, s)ds for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4:::gamm4)

as constructed by pffr.

Usage

ffpc(
X,
yind = NULL,
xind = seq(0, 1, length = ncol(X)),
splinepars = list(bs = "ps", m = c(2, 1), k = 8),
decomppars = list(pve = 0.99, useSymm = TRUE),
npc.max = 15

)

https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-10/issue-1/Identifiability-in-penalized-function-on-function-regression-models/10.1214/16-EJS1123.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-10/issue-1/Identifiability-in-penalized-function-on-function-regression-models/10.1214/16-EJS1123.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-10/issue-1/Identifiability-in-penalized-function-on-function-regression-models/10.1214/16-EJS1123.full

ffpc 31

Arguments

X an n by ncol(xind) matrix of function evaluations Xi(si1), . . . , Xi(siS); i =
1, . . . , n.

yind DEPRECATED used to supply matrix (or vector) of indices of evaluations of
Yi(t), no longer used.

xind matrix (or vector) of indices of evaluations of Xi(t), defaults to seq(0, 1,
length=ncol(X)).

splinepars optional arguments supplied to the basistype-term. Defaults to a cubic B-
spline with first difference penalties and 8 basis functions for each β̃k(t).

decomppars parameters for the FPCA performed with fpca.sc.

npc.max maximal number K of FPCs to use, regardless of decomppars; defaults to 15

Details

In contrast to ff, ffpc does an FPCA decomposition X(s) ≈
∑K

k=1 ξikΦk(s) using fpca.sc and
represents β(t, s) in the function space spanned by these Φk(s). That is, since∫

Xi(s)β(t, s)ds =

K∑
k=1

ξik

∫
Φk(s)β(s, t)ds =

K∑
k=1

ξikβ̃k(t),

the function-on-function term can be represented as a sum of K univariate functions β̃k(t) in t each
multiplied by the FPC scores ξik. The truncation parameter K is chosen as described in fpca.sc.
Using this instead of ff() can be beneficial if the covariance operator of the Xi(s) has low effective
rank (i.e., if K is small). If the covariance operator of the Xi(s) is of (very) high rank, i.e., if K is
large, ffpc() will not be very efficient.

To reduce model complexity, the β̃k(t) all have a single joint smoothing parameter (in mgcv, they
get the same id, see s).

Please see pffr for details on model specification and implementation.

Value

A list containing the necessary information to construct a term to be included in a mgcv::gam-
formula.

Author(s)

Fabian Scheipl

Examples

Not run:
set.seed(1122)
n <- 55
S <- 60
T <- 50
s <- seq(0,1, l=S)

32 ffpcplot

t <- seq(0,1, l=T)

#generate X from a polynomial FPC-basis:
rankX <- 5
Phi <- cbind(1/sqrt(S), poly(s, degree=rankX-1))
lambda <- rankX:1
Xi <- sapply(lambda, function(l)

scale(rnorm(n, sd=sqrt(l)), scale=FALSE))
X <- Xi %*% t(Phi)

beta.st <- outer(s, t, function(s, t) cos(2 * pi * s * t))

y <- (1/S*X) %*% beta.st + 0.1 * matrix(rnorm(n * T), nrow=n, ncol=T)

data <- list(y=y, X=X)
set number of FPCs to true rank of process for this example:
m.pc <- pffr(y ~ c(1) + 0 + ffpc(X, yind=t, decomppars=list(npc=rankX)),

data=data, yind=t)
summary(m.pc)
m.ff <- pffr(y ~ c(1) + 0 + ff(X, yind=t), data=data, yind=t)
summary(m.ff)

fits are very similar:
all.equal(fitted(m.pc), fitted(m.ff))

plot implied coefficient surfaces:
layout(t(1:3))
persp(t, s, t(beta.st), theta=50, phi=40, main="Truth",

ticktype="detailed")
plot(m.ff, select=1, zlim=range(beta.st), theta=50, phi=40,

ticktype="detailed")
title(main="ff()")
ffpcplot(m.pc, type="surf", auto.layout=FALSE, theta = 50, phi = 40)
title(main="ffpc()")

show default ffpcplot:
ffpcplot(m.pc)

End(Not run)

ffpcplot Plot PC-based function-on-function regression terms

Description

Convenience function for graphical summaries of ffpc-terms from a pffr fit.

Usage

ffpcplot(

ffpcplot 33

object,
type = c("fpc+surf", "surf", "fpc"),
pages = 1,
se.mult = 2,
ticktype = "detailed",
theta = 30,
phi = 30,
plot = TRUE,
auto.layout = TRUE

)

Arguments

object a fitted pffr-model

type one of "fpc+surf", "surf" or "fpc": "surf" shows a perspective plot of the coeffi-
cient surface implied by the estimated effect functions of the FPC scores, "fpc"
shows three plots: 1) a scree-type plot of the estimated eigenvalues of the func-
tional covariate, 2) the estimated eigenfunctions, and 3) the estimated coefficient
functions associated with the FPC scores. Defaults to showing both.

pages the number of pages over which to spread the output. Defaults to 1. (Irrelevant
if auto.layout=FALSE.)

se.mult display estimated coefficient functions associated with the FPC scores with plus/minus
this number time the estimated standard error. Defaults to 2.

ticktype see persp.

theta see persp.

phi see persp.

plot produce plots or only return plotting data? Defaults to TRUE.

auto.layout should the the function set a suitable layout automatically? Defaults to TRUE

Value

primarily produces plots, invisibly returns a list containing the data used for the plots.

Author(s)

Fabian Scheipl

Examples

Not run:
#see ?ffpc

End(Not run)

34 fgam

fgam Functional Generalized Additive Models

Description

Implements functional generalized additive models for functional and scalar covariates and scalar
responses. Additionally implements functional linear models. This function is a wrapper for mgcv’s
gam and its siblings to fit models of the general form

g(E(Yi)) = β0 +

∫
T1

F (Xi1, t)dt+

∫
T2

β(t)Xi2dt+ f(zi1) + f(zi2, zi3) + . . .

with a scalar (but not necessarily continuous) response Y, and link function g

Usage

fgam(formula, fitter = NA, tensortype = c("te", "t2"), ...)

Arguments

formula a formula with special terms as for gam, with additional special terms af(), lf(),
re().

fitter the name of the function used to estimate the model. Defaults to gam if the
matrix of functional responses has less than 2e5 data points and to bam if not.
"gamm" (see gamm) and "gamm4" (see gamm4) are valid options as well.

tensortype defaults to te, other valid option is t2
... additional arguments that are valid for gam or bam; for example, specify a gamma

> 1 to increase amount of smoothing when using GCV to choose smoothing
parameters or method="REML" to change to REML for estimation of smoothing
parameters (default is GCV).

Value

a fitted fgam-object, which is a gam-object with some additional information in a fgam-entry. If
fitter is "gamm" or "gamm4", only the $gam part of the returned list is modified in this way.

Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional gen-
eralized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269.
Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/

fgam 35

See Also

af, lf, predict.fgam, vis.fgam

Examples

data(DTI)
only consider first visit and cases (no PASAT scores for controls)
y <- DTI$pasat[DTI$visit==1 & DTI$case==1]
X <- DTI$cca[DTI$visit==1 & DTI$case==1,]
X_2 <- DTI$rcst[DTI$visit==1 & DTI$case==1,]

remove samples containing missing data
ind <- rowSums(is.na(X)) > 0
ind2 <- rowSums(is.na(X_2)) > 0

y <- y[!(ind | ind2)]
X <- X[!(ind | ind2),]
X_2 <- X_2[!(ind | ind2),]

N <- length(y)

fit fgam using FA measurements along corpus callosum
as functional predictor with PASAT as response
using 8 cubic B-splines for marginal bases with third
order marginal difference penalties
specifying gamma > 1 enforces more smoothing when using
GCV to choose smoothing parameters
#fit <- fgam(y ~ af(X, k = c(8, 8), m = list(c(2, 3), c(2, 3))), gamma = 1.2)

fgam term for the cca measurements plus an flm term for the rcst measurements
leave out 10 samples for prediction
test <- sample(N, 10)
#fit <- fgam(y ~ af(X, k = c(7, 7), m = list(c(2, 2), c(2, 2))) +
lf(X_2, k=7, m = c(2, 2)), subset=(1:N)[-test])

#plot(fit)
predict the ten left outs samples
#pred <- predict(fit, newdata = list(X=X[test,], X_2 = X_2[test,]), type='response',
PredOutOfRange = TRUE)

#sqrt(mean((y[test] - pred)^2))
Try to predict the binary response disease status (case or control)
using the quantile transformed measurements from the rcst tract
with a smooth component for a scalar covariate that is pure noise
y <- DTI$case[DTI$visit==1]
X <- DTI$cca[DTI$visit==1,]
X_2 <- DTI$rcst[DTI$visit==1,]

ind <- rowSums(is.na(X)) > 0
ind2 <- rowSums(is.na(X_2)) > 0

y <- y[!(ind | ind2)]
X <- X[!(ind | ind2),]

36 fosr

X_2 <- X_2[!(ind | ind2),]
z1 <- rnorm(length(y))

select=TRUE allows terms to be zeroed out of model completely
#fit <- fgam(y ~ s(z1, k = 10) + af(X_2, k=c(7,7), m = list(c(2, 1), c(2, 1)),
Qtransform=TRUE), family=binomial(), select=TRUE)

#plot(fit)

fosr Function-on-scalar regression

Description

Fit linear regression with functional responses and scalar predictors, with efficient selection of op-
timal smoothing parameters.

Usage

fosr(
formula = NULL,
Y = NULL,
fdobj = NULL,
data = NULL,
X,
con = NULL,
argvals = NULL,
method = c("OLS", "GLS", "mix"),
gam.method = c("REML", "ML", "GCV.Cp", "GACV.Cp", "P-REML", "P-ML"),
cov.method = c("naive", "mod.chol"),
lambda = NULL,
nbasis = 15,
norder = 4,
pen.order = 2,
multi.sp = ifelse(method == "OLS", FALSE, TRUE),
pve = 0.99,
max.iter = 1,
maxlam = NULL,
cv1 = FALSE,
scale = FALSE

)

Arguments

formula Formula for fitting fosr. If used, data argument must not be null.

Y, fdobj the functional responses, given as either an n × d matrix Y or a functional data
object (class "fd") as in the fda package.

fosr 37

data data frame containing the predictors and responses.

X the model matrix, whose columns represent scalar predictors. Should ordinarily
include a column of 1s.

con a row vector or matrix of linear contrasts of the coefficient functions, to be con-
strained to equal zero.

argvals the d argument values at which the coefficient functions will be evaluated.

method estimation method: "OLS" for penalized ordinary least squares, "GLS" for pe-
nalized generalized least squares, "mix" for mixed effect models.

gam.method smoothing parameter selection method, to be passed to gam: "REML" for re-
stricted maximum likelihood, "GCV.Cp" for generalized cross-validation.

cov.method covariance estimation method: the current options are naive or modified Cholesky.
See Details.

lambda smoothing parameter value. If NULL, the smoothing parameter(s) will be esti-
mated. See Details.

nbasis, norder number of basis functions, and order of splines (the default, 4, gives cubic
splines), for the B-spline basis used to represent the coefficient functions. When
the functional responses are supplied using fdobj, these arguments are ignored
in favor of the values pertaining to the supplied object.

pen.order order of derivative penalty.

multi.sp a logical value indicating whether separate smoothing parameters should be
estimated for each coefficient function. Currently must be FALSE if method =
"OLS".

pve if method = 'mix', the percentage of variance explained by the principal com-
ponents; defaults to 0.99.

max.iter maximum number of iterations if method = "GLS".

maxlam maximum smoothing parameter value to consider (when lamvec=NULL; see lofocv).

cv1 logical value indicating whether a cross-validation score should be computed
even if a single fixed lambda is specified (when method = "OLS").

scale logical value or vector determining scaling of the matrix X (see scale, to which
the value of this argument is passed).

Details

The GLS method requires estimating the residual covariance matrix, which has dimension d × d
when the responses are given by Y, or nbasis × nbasis when they are given by fdobj. When
cov.method = "naive", the ordinary sample covariance is used. But this will be singular, or non-
singular but unstable, in high-dimensional settings, which are typical. cov.method = "mod.chol"
implements the modified Cholesky method of Pourahmadi (1999) for estimation of covariance ma-
trices whose inverse is banded. The number of bands is chosen to maximize the p-value for a
sphericity test (Ledoit and Wolf, 2002) applied to the "prewhitened" residuals. Note, however, that
the banded inverse covariance assumption is sometimes inappropriate, e.g., for periodic functional
responses.

There are three types of values for argument lambda:

38 fosr

1. if NULL, the smoothing parameter is estimated by gam (package mgcv) if method = "GLS", or
by optimize if method = "OLS";

2. if a scalar, this value is used as the smoothing parameter (but only for the initial model, if
method = "GLS");

3. if a vector, this is used as a grid of values for optimizing the cross-validation score (provided
method = "OLS"; otherwise an error message is issued).

Please note that currently, if multi.sp = TRUE, then lambda must be NULL and method must be
"GLS".

Value

An object of class fosr, which is a list with the following elements:

fd object of class "fd" representing the estimated coefficient functions. Its main
components are a basis and a matrix of coefficients with respect to that basis.

pca.resid if method = "mix", an object representing a functional PCA of the residuals,
performed by fpca.sc if the responses are in raw form or by pca.fd if in
functional-data-object form.

U if method = "mix", an n×m matrix of random effects, where m is the number
of functional PC’s needed to explain proportion pve of the residual variance.
These random effects can be interpreted as shrunken FPC scores.

yhat, resid objects of the same form as the functional responses (see arguments Y and
fdobj), giving the fitted values and residuals.

est.func matrix of values of the coefficient function estimates at the points given by
argvals.

se.func matrix of values of the standard error estimates for the coefficient functions, at
the points given by argvals.

argvals points at which the coefficient functions are evaluated.

fit fit object outputted by amc.

edf effective degrees of freedom of the fit.

lambda smoothing parameter, or vector of smoothing parameters.

cv cross-validated integrated squared error if method="OLS", otherwise NULL.

roughness value of the roughness penalty.

resp.type "raw" or "fd", indicating whether the responses were supplied in raw or functional-
data-object form.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>, Lan Huo, and Fabian Scheipl

fosr 39

References

Ledoit, O., and Wolf, M. (2002). Some hypothesis tests for the covariance matrix when the dimen-
sion is large compared to the sample size. Annals of Statistics, 30(4), 1081–1102.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: un-
constrained parameterisation. Biometrika, 86(3), 677–690.

Ramsay, J. O., and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed., Chapter 13. New
York: Springer.

Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized
basis expansions. International Journal of Biostatistics, 6(1), article 28. Available at https://
pubmed.ncbi.nlm.nih.gov/21969982/

See Also

plot.fosr

Examples

Not run:
require(fda)
The first two lines, adapted from help(fRegress) in package fda,
set up a functional data object representing daily average
temperatures at 35 sites in Canada
daybasis25 <- create.fourier.basis(rangeval=c(0, 365), nbasis=25,

axes=list('axesIntervals'))
Temp.fd <- with(CanadianWeather, smooth.basisPar(day.5,

dailyAv[,,'Temperature.C'], daybasis25)$fd)

modmat = cbind(1, model.matrix(~ factor(CanadianWeather$region) - 1))
constraints = matrix(c(0,1,1,1,1), 1)

Penalized OLS with smoothing parameter chosen by grid search
olsmod = fosr(fdobj = Temp.fd, X = modmat, con = constraints, method="OLS", lambda=100*10:30)
plot(olsmod, 1)

Test use formula to fit fosr
set.seed(2121)
data1 <- pffrSim(scenario="ff", n=40)
formod = fosr(Y~xlin+xsmoo, data=data1)
plot(formod, 1)

Penalized GLS
glsmod = fosr(fdobj = Temp.fd, X = modmat, con = constraints, method="GLS")
plot(glsmod, 1)

End(Not run)

https://pubmed.ncbi.nlm.nih.gov/21969982/
https://pubmed.ncbi.nlm.nih.gov/21969982/

40 fosr.perm

fosr.perm Permutation testing for function-on-scalar regression

Description

fosr.perm() is a wrapper function calling fosr.perm.fit(), which fits models to permuted data,
followed by fosr.perm.test(), which performs the actual simultaneous hypothesis test. Calling
the latter two functions separately may be useful for performing tests at different significance levels.
By default, fosr.perm() produces a plot using the plot function for class fosr.perm.

Usage

fosr.perm(
Y = NULL,
fdobj = NULL,
X,
con = NULL,
X0 = NULL,
con0 = NULL,
argvals = NULL,
lambda = NULL,
lambda0 = NULL,
multi.sp = FALSE,
nperm,
level = 0.05,
plot = TRUE,
xlabel = "",
title = NULL,
prelim = if (multi.sp) 0 else 15,
...

)

fosr.perm.fit(
Y = NULL,
fdobj = NULL,
X,
con = NULL,
X0 = NULL,
con0 = NULL,
argvals = NULL,
lambda = NULL,
lambda0 = NULL,
multi.sp = FALSE,
nperm,
prelim,
...

)

fosr.perm 41

fosr.perm.test(x, level = 0.05)

S3 method for class 'fosr.perm'
plot(x, level = 0.05, xlabel = "", title = NULL, ...)

Arguments

Y, fdobj the functional responses, given as either an n × d matrix Y or a functional data
object (class "fd") as in the fda package.

X the design matrix, whose columns represent scalar predictors.

con a row vector or matrix of linear contrasts of the coefficient functions, to be re-
stricted to equal zero.

X0 design matrix for the null-hypothesis model. If NULL, the null hypothesis is the
intercept-only model.

con0 linear constraints for the null-hypothesis model.

argvals the d argument values at which the coefficient functions will be evaluated.

lambda smoothing parameter value. If NULL, the smoothing parameter(s) will be esti-
mated. See fosr for details.

lambda0 smoothing parameter for null-hypothesis model.

multi.sp a logical value indicating whether separate smoothing parameters should be
estimated for each coefficient function. Currently must be FALSE if method =
"OLS".

nperm number of permutations.

level significance level for the simultaneous test.

plot logical value indicating whether to plot the real- and permuted-data pointwise
F-type statistics.

xlabel x-axis label for plots.

title title for plot.

prelim number of preliminary permutations. The smoothing parameter in the main per-
mutations will be fixed to the median value from these preliminary permutations.
If prelim=0, this is not done. Preliminary permutations are not available when
multi.sp = TRUE (hence the complicated default).

... for fosr.perm and fosr.perm.fit, additional arguments passed to fosr. These
arguments may include max.iter, method, gam.method, and scale. For plot.fosr.perm,
graphical parameters (see par) for the plot.

x object of class fosr.perm, outputted by fosr.perm, fosr.perm.fit, or fosr.perm.test.

Value

fosr.perm or fosr.perm.test produces an object of class fosr.perm, which is a list with the ele-
ments below. fosr.perm.fit also outputs an object of this class, but without the last five elements.

F pointwise F-type statistics at each of the points given by argvals.

42 fosr.perm

F.perm a matrix, each of whose rows gives the pointwise F-type statistics for a permuted
data set.

argvals points at which F-type statistics are computed.

lambda.real smoothing parameter(s) for the real-data fit.

lambda.prelim smoothing parameter(s) for preliminary permuted-data fits.

lambda.perm smoothing parameter(s) for main permuted-data fits.
lambda0.real, lambda0.prelim, lambda0.perm

as above, but for null hypothesis models.

level significance level of the test.

critval critical value for the test.

signif vector of logical values indicating whether significance is attained at each of the
points argvals.

n2s subset of 1, ..., length(argvals) identifying the points at which the test statistic
changes from non-significant to significant.

s2n points at which the test statistic changes from significant to non-significant.

Author(s)

Philip Reiss <phil.reiss@nyumc.org> and Lan Huo

References

Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized
basis expansions. International Journal of Biostatistics, 6(1), article 28. Available at https://
pubmed.ncbi.nlm.nih.gov/21969982/

See Also

fosr

Examples

Not run:
Test effect of region on mean temperature in the Canadian weather data
The next two lines are taken from the fRegress.CV help file (package fda)
smallbasis <- create.fourier.basis(c(0, 365), 25)
tempfd <- smooth.basis(day.5,

CanadianWeather$dailyAv[,,"Temperature.C"], smallbasis)$fd

Xreg = cbind(1, model.matrix(~factor(CanadianWeather$region)-1))
conreg = matrix(c(0,1,1,1,1), 1) # constrain region effects to sum to 0

This is for illustration only; for a real test, must increase nperm
(and probably prelim as well)
regionperm = fosr.perm(fdobj=tempfd, X=Xreg, con=conreg, method="OLS", nperm=10, prelim=3)

Redo the plot, using axisIntervals() from the fda package
plot(regionperm, axes=FALSE, xlab="")

https://pubmed.ncbi.nlm.nih.gov/21969982/
https://pubmed.ncbi.nlm.nih.gov/21969982/

fosr.vs 43

box()
axis(2)
axisIntervals(1)

End(Not run)

fosr.vs Function-on Scalar Regression with variable selection

Description

Implements an iterative algorithm for function-on-scalar regression with variable selection by alter-
natively updating the coefficients and covariance structure.

Usage

fosr.vs(
formula,
data,
nbasis = 10,
method = c("ls", "grLasso", "grMCP", "grSCAD"),
epsilon = 1e-05,
max.iter_num = 100

)

Arguments

formula an object of class "formula": an expression of the model to be fitted.
data a data frame that contains the variables in the model.
nbasis number of B-spline basis functions used.
method group variable selection method to be used ("grLasso", "grMCP", "grSCAD"

refer to group Lasso, group MCP and group SCAD, respectively) or "ls" for
least squares estimation.

epsilon the convergence criterion.
max.iter_num maximum number of iterations.

Value

A fitted fosr.vs-object, which is a list with the following elements:

formula an object of class "formula": an expression of the model to be fitted.
coefficients the estimated coefficient functions.
fitted.values the fitted curves.
residuals the residual curves.
vcov the estimated variance-covariance matrix when convergence is achieved.
method group variable selection method to be used or "ls" for least squares estimation.

44 fosr.vs

Author(s)

Yakuan Chen <yc2641@cumc.columbia.edu>

References

Chen, Y., Goldsmith, J., and Ogden, T. (2016). Variable selection in function-on-scalar regression.
Stat 5 88-101

See Also

grpreg

Examples

Not run:
set.seed(100)

I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)

set.seed(100)

X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.fosr.vs = fosr.vs(Y~., data = data, method="grMCP")
plot(fit.fosr.vs)

End(Not run)

fosr2s 45

fosr2s Two-step function-on-scalar regression

Description

This function performs linear regression with functional responses and scalar predictors by (1)
fitting a separate linear model at each point along the function, and then (2) smoothing the resulting
coefficients to obtain coefficient functions.

Usage

fosr2s(
Y,
X,
argvals = seq(0, 1, , ncol(Y)),
nbasis = 15,
norder = 4,
pen.order = norder - 2,
basistype = "bspline"

)

Arguments

Y the functional responses, given as an n× d matrix.

X n × p model matrix, whose columns represent scalar predictors. Should ordi-
narily include a column of 1s.

argvals the d argument values at which the functional responses are evaluated, and at
which the coefficient functions will be evaluated.

nbasis number of basis functions used to represent the coefficient functions.

norder norder of the spline basis, when basistype="bspline" (the default, 4, gives
cubic splines).

pen.order order of derivative penalty.

basistype type of basis used. The basis is created by an appropriate constructor function
from the fda package; see basisfd. Only "bspline" and "fourier" are sup-
ported.

Details

Unlike fosr and pffr, which obtain smooth coefficient functions by minimizing a penalized crite-
rion, this function introduces smoothing only as a second step. The idea was proposed by Fan and
Zhang (2000), who employed local polynomials rather than roughness penalization for the smooth-
ing step.

46 fpc

Value

An object of class fosr, which is a list with the following elements:

fd object of class "fd" representing the estimated coefficient functions. Its main
components are a basis and a matrix of coefficients with respect to that basis.

raw.coef d × p matrix of coefficient estimates from regressing on X separately at each
point along the function.

raw.se d× p matrix of standard errors of the raw coefficient estimates.

yhat n× d matrix of fitted values.

est.func d×p matrix of coefficient function estimates, obtained by smoothing the columns
of raw.coef.

se.func d× p matrix of coefficient function standard errors.

argvals points at which the coefficient functions are evaluated.

lambda smoothing parameters (chosen by REML) used to smooth the p coefficient func-
tions with respect to the supplied basis.

Author(s)

Philip Reiss <phil.reiss@nyumc.org> and Lan Huo

References

Fan, J., and Zhang, J.-T. (2000). Two-step estimation of functional linear models with applications
to longitudinal data. Journal of the Royal Statistical Society, Series B, 62(2), 303–322.

See Also

fosr, pffr

fpc Construct a FPC regression term

Description

Constructs a functional principal component regression (Reiss and Ogden, 2007, 2010) term for
inclusion in an mgcv::gam-formula (or bam or gamm or gamm4:::gamm) as constructed by pfr. Cur-
rently only one-dimensional functions are allowed.

fpc 47

Usage

fpc(
X,
argvals = NULL,
method = c("svd", "fpca.sc", "fpca.face", "fpca.ssvd"),
ncomp = NULL,
pve = 0.99,
penalize = (method == "svd"),
bs = "ps",
k = 40,
...

)

Arguments

X functional predictors, typically expressed as an N by J matrix, where N is the
number of columns and J is the number of evaluation points. May include miss-
ing/sparse functions, which are indicated by NA values. Alternatively, can be an
object of class "fd"; see fd.

argvals indices of evaluation of X, i.e. (ti1, ., tiJ) for subject i. May be entered as either a
length-J vector, or as an N by J matrix. Indices may be unequally spaced. Enter-
ing as a matrix allows for different observations times for each subject. If NULL,
defaults to an equally-spaced grid between 0 or 1 (or within X$basis$rangeval
if X is a fd object.)

method the method used for finding principal components. The default is an uncon-
strained SVD of the XB matrix. Alternatives include constrained (functional)
principal components approaches

ncomp number of principal components. if NULL, chosen by pve

pve proportion of variance explained; used to choose the number of principal com-
ponents

penalize if TRUE, a roughness penalty is applied to the functional estimate. Defaults to
TRUE if method=="svd" (corresponding to the FPCR_R method of Reiss and
Ogden (2007)), and FALSE if method!="svd" (corresponding to FPCR_C).

bs two letter character string indicating the mgcv-style basis to use for pre-smoothing
X

k the dimension of the pre-smoothing basis
... additional options to be passed to lf. These include argvals, integration,

and any additional options for the pre-smoothing basis (as constructed by mgcv::s),
such as m.

Details

fpc is a wrapper for lf, which defines linear functional predictors for any type of basis for inclusion
in a pfr formula. fpc simply calls lf with the appropriate options for the fpc basis and penalty
construction.

This function implements both the FPCR-R and FPCR-C methods of Reiss and Ogden (2007). Both
methods consist of the following steps:

48 fpc

1. project X onto a spline basis B

2. perform a principal components decomposition of XB

3. use those PC’s as the basis in fitting a (generalized) functional linear model

This implementation provides options for each of these steps. The basis for in step 1 can be specified
using the arguments bs and k, as well as other options via ...; see s for these options. The type of
PC-decomposition is specified with method. And the FLM can be fit either penalized or unpenalized
via penalize.

The default is FPCR-R, which uses a b-spline basis, an unconstrained principal components decom-
position using svd, and the FLM fit with a second-order difference penalty. FPCR-C can be selected
by using a different option for method, indicating a constrained ("functional") PC decomposition,
and by default an unpenalized fit of the FLM.

FPCR-R is also implemented in fpcr; here we implement the method for inclusion in a pfr formula.

Value

The result of a call to lf.

NOTE

Unlike fpcr, fpc within a pfr formula does not automatically decorrelate the functional predictors
from additional scalar covariates.

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com>, Phil Reiss <phil.reiss@nyumc.org>, Lan
Huo <lan.huo@nyumc.org>, and Lei Huang <huangracer@gmail.com>

References

Reiss, P. T. (2006). Regression with signals and images as predictors. Ph.D. dissertation, Depart-
ment of Biostatistics, Columbia University. Available at http://works.bepress.com/phil_reiss/11/.

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional
partial least squares. Journal of the American Statistical Association, 102, 984-996.

Reiss, P. T., and Ogden, R. T. (2010). Functional generalized linear models with images as predic-
tors. Biometrics, 66, 61-69.

See Also

lf, smooth.construct.fpc.smooth.spec

Examples

data(gasoline)
par(mfrow=c(3,1))

Fit PFCR_R
gasmod1 <- pfr(octane ~ fpc(NIR, ncomp=30), data=gasoline)
plot(gasmod1, rug=FALSE)

fpca.face 49

est1 <- coef(gasmod1)

Fit FPCR_C with fpca.sc
gasmod2 <- pfr(octane ~ fpc(NIR, method="fpca.sc", ncomp=6), data=gasoline)
plot(gasmod2, se=FALSE)
est2 <- coef(gasmod2)

Fit penalized model with fpca.face
gasmod3 <- pfr(octane ~ fpc(NIR, method="fpca.face", penalize=TRUE), data=gasoline)
plot(gasmod3, rug=FALSE)
est3 <- coef(gasmod3)

par(mfrow=c(1,1))
ylm <- range(est1$value)*1.35
plot(value ~ X.argvals, type="l", data=est1, ylim=ylm)
lines(value ~ X.argvals, col=2, data=est2)
lines(value ~ X.argvals, col=3, data=est3)

fpca.face Functional principal component analysis with fast covariance estima-
tion

Description

A fast implementation of the sandwich smoother (Xiao et al., 2013) for covariance matrix smooth-
ing. Pooled generalized cross validation at the data level is used for selecting the smoothing param-
eter.

Usage

fpca.face(
Y = NULL,
ydata = NULL,
Y.pred = NULL,
argvals = NULL,
pve = 0.99,
npc = NULL,
var = FALSE,
simul = FALSE,
sim.alpha = 0.95,
center = TRUE,
knots = 35,
p = 3,
m = 2,
lambda = NULL,
alpha = 1,
search.grid = TRUE,
search.length = 100,

50 fpca.face

method = "L-BFGS-B",
lower = -20,
upper = 20,
control = NULL,
periodicity = FALSE

)

Arguments

Y, ydata the user must supply either Y, a matrix of functions observed on a regular grid,
or a data frame ydata representing irregularly observed functions. See Details.

Y.pred if desired, a matrix of functions to be approximated using the FPC decomposi-
tion.

argvals numeric; function argument.

pve proportion of variance explained: used to choose the number of principal com-
ponents.

npc how many smooth SVs to try to extract, if NA (the default) the hard thresholding
rule of Gavish and Donoho (2014) is used (see Details, References).

var logical; should an estimate of standard error be returned?

simul logical; if TRUE curves will we simulated using Monte Carlo to obtain an esti-
mate of the sim.alpha quantile at each argval; ignored if var == FALSE

sim.alpha numeric; if simul==TRUE, quantile to estimate at each argval; ignored if var
== FALSE

center logical; center Y so that its column-means are 0? Defaults to TRUE

knots number of knots to use or the vectors of knots; defaults to 35

p integer; the degree of B-splines functions to use

m integer; the order of difference penalty to use

lambda smoothing parameter; if not specified smoothing parameter is chosen using
optim or a grid search

alpha numeric; tuning parameter for GCV; see parameter gamma in gam

search.grid logical; should a grid search be used to find lambda? Otherwise, optim is used

search.length integer; length of grid to use for grid search for lambda; ignored if search.grid
is FALSE

method method to use; see optim

lower see optim

upper see optim

control see optim

periodicity Option for a periodic spline basis. Defaults to FALSE.

fpca.face 51

Value

A list with components

1. Yhat - If Y.pred is specified, the smooth version of Y.pred. Otherwise, if Y.pred=NULL, the
smooth version of Y.

2. scores - matrix of scores

3. mu - mean function

4. npc - number of principal components

5. efunctions - matrix of eigenvectors

6. evalues - vector of eigenvalues

7. pve - The percent variance explained by the returned number of PCs

if var == TRUE additional components are returned

1. sigma2 - estimate of the error variance

2. VarMats - list of covariance function estimate for each subject

3. diag.var - matrix containing the diagonals of each matrix in

4. crit.val - list of estimated quantiles; only returned if simul == TRUE

Author(s)

Luo Xiao

References

Xiao, L., Li, Y., and Ruppert, D. (2013). Fast bivariate P-splines: the sandwich smoother, Journal
of the Royal Statistical Society: Series B, 75(3), 577-599.

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for
high-dimensional functional data. Statistics and Computing, 26, 409-421. DOI: 10.1007/s11222-
014-9485-x.

See Also

fpca.sc for another covariance-estimate based smoothing of Y; fpca2s and fpca.ssvd for two
SVD-based smoothings.

Examples

settings
I <- 50 # number of subjects
J <- 3000 # dimension of the data
t <- (1:J)/J # a regular grid on [0,1]
N <- 4 #number of eigenfunctions
sigma <- 2 ##standard deviation of random noises
lambdaTrue <- c(1,0.5,0.5^2,0.5^3) # True eigenvalues

case = 1
True Eigenfunctions

52 fpca.lfda

if(case==1) phi <- sqrt(2)*cbind(sin(2*pi*t),cos(2*pi*t),
sin(4*pi*t),cos(4*pi*t))

if(case==2) phi <- cbind(rep(1,J),sqrt(3)*(2*t-1),
sqrt(5)*(6*t^2-6*t+1),
sqrt(7)*(20*t^3-30*t^2+12*t-1))

###
######## Generate Data #############
###
xi <- matrix(rnorm(I*N),I,N);
xi <- xi %*% diag(sqrt(lambdaTrue))
X <- xi %*% t(phi); # of size I by J
Y <- X + sigma*matrix(rnorm(I*J),I,J)

results <- fpca.face(Y,center = TRUE, argvals=t,knots=100,pve=0.99)

calculate percent variance explained by each PC
evalues = results$evalues
pve_vec = evalues * results$npc/sum(evalues)

###
FACE
###
Phi <- results$efunctions
eigenvalues <- results$evalues

for(k in 1:N){
if(Phi[,k] %*% phi[,k]< 0)
Phi[,k] <- - Phi[,k]

}

plot eigenfunctions
par(mfrow=c(N/2,2))
seq <- (1:(J/10))*10
for(k in 1:N){

plot(t[seq],Phi[seq,k]*sqrt(J),type="l",lwd = 3,
ylim = c(-2,2),col = "red",
ylab = paste("Eigenfunction ",k,sep=""),
xlab="t",main="FACE")

lines(t[seq],phi[seq,k],lwd = 2, col = "black")
}

fpca.lfda Longitudinal Functional Data Analysis using FPCA

Description

Implements longitudinal functional data analysis (Park and Staicu, 2015). It decomposes longitudinally-
observed functional observations in two steps. It first applies FPCA on a properly defined marginal

fpca.lfda 53

covariance function and obtain estimated scores (mFPCA step). Then it further models the underly-
ing process dynamics by applying another FPCA on a covariance of the estimated scores obtained
in the mFPCA step. The function also allows to use a random effects model to study the underlying
process dynamics instead of a KL expansion model in the second step. Scores in mFPCA step are
estimated using numerical integration. Scores in sFPCA step are estimated under a mixed model
framework.

Usage

fpca.lfda(
Y,
subject.index,
visit.index,
obsT = NULL,
funcArg = NULL,
numTEvalPoints = 41,
newdata = NULL,
fbps.knots = c(5, 10),
fbps.p = 3,
fbps.m = 2,
mFPCA.pve = 0.95,
mFPCA.knots = 35,
mFPCA.p = 3,
mFPCA.m = 2,
mFPCA.npc = NULL,
LongiModel.method = c("fpca.sc", "lme"),
sFPCA.pve = 0.95,
sFPCA.nbasis = 10,
sFPCA.npc = NULL,
gam.method = "REML",
gam.kT = 10

)

Arguments

Y a matrix of which each row corresponds to one curve observed on a regular and
dense grid (dimension of N by m; N = total number of observed functions; m =
number of grid points)

subject.index subject id; vector of length N with each element corresponding a row of Y
visit.index index for visits (repeated measures); vector of length N with each element cor-

responding a row of Y
obsT actual time of visits at which a function is observed; vector of length N with

each element corresponding a row of Y
funcArg numeric; function argument
numTEvalPoints total number of evaluation time points for visits; used for pre-binning in sFPCA

step; defaults to 41
newdata an optional data frame providing predictors (i for subject id / Ltime for visit

time) with which prediction is desired; defaults to NULL

54 fpca.lfda

fbps.knots list of two vectors of knots or number of equidistanct knots for all dimensions for
a fast bivariate P-spline smoothing (fbps) method used to estimate a bivariate,
smooth mean function; defaults to c(5,10); see fbps

fbps.p integer;degrees of B-spline functions to use for a fbps method; defaults to 3; see
fbps

fbps.m integer;order of differencing penalty to use for a fbps method; defaults to 2; see
fbps

mFPCA.pve proportion of variance explained for a mFPCA step; used to choose the number
of principal components (PCs); defaults to 0.95; see fpca.face

mFPCA.knots number of knots to use or the vectors of knots in a mFPCA step; used for obtain
a smooth estimate of a covariance function; defaults to 35; see fpca.face

mFPCA.p integer; the degree of B-spline functions to use in a mFPCA step; defaults to 3;
see fpca.face

mFPCA.m integer;order of differencing penalty to use in a mFPCA step; defaults to 2; see
fpca.face

mFPCA.npc pre-specified value for the number of principal components; if given, it overrides
pve; defaults to NULL; see fpca.face

LongiModel.method

model and estimation method for estimating covariance of estimated scores from
a mFPCA step; either KL expansion model or random effects model; defaults to
fpca.sc

sFPCA.pve proportion of variance explained for sFPCA step; used to choose the number of
principal components; defaults to 0.95; see fpca.sc

sFPCA.nbasis number of B-spline basis functions used in sFPCA step for estimation of the
mean function and bivariate smoothing of the covariance surface; defaults to 10;
see fpca.sc

sFPCA.npc pre-specified value for the number of principal components; if given, it overrides
pve; defaults to NULL; see fpca.sc

gam.method smoothing parameter estimation method when gam is used for predicting score
functions at unobserved visit time, T; defaults to REML; see gam

gam.kT dimension of basis functions to use; see gam

Value

A list with components

obsData observed data (input)

i subject id

funcArg function argument

visitTime visit times

fitted.values fitted values (in-sample); of the same dimension as Y
fitted.values.all

a list of which each component consists of a subject’s fitted values at all pairs of
evaluation points (s and T)

fpca.lfda 55

predicted.values

predicted values for variables provided in newdata
bivariateSmoothMeanFunc

estimated bivariate smooth mean function
mFPCA.efunctions

estimated eigenfunction in a mFPCA step

mFPCA.evalues estimated eigenvalues in a mFPCA step

mFPCA.npc number of principal components selected with pre-specified pve in a mFPCA
step

mFPCA.scree.eval

estimated eigenvalues obtained with pre-specified pve = 0.9999; for scree plot
sFPCA.xiHat.bySubj

a list of which each component consists of a subject’s predicted score functions
evaluated at equidistanced grid in direction of visit time, T

sFPCA.npc a vector of numbers of principal components selected in a sFPCA step with
pre-specified pve; length of mFPCA.npc

mFPCA.covar estimated marginal covariance
sFPCA.longDynCov.k

a list of estimated covariance of score function; length of mFPCA.npc

Details

A random effects model is recommended when a set of visit times for all subjects and visits is not
dense in its range.

Author(s)

So Young Park <spark13@ncsu.edu>, Ana-Maria Staicu

References

Park, S.Y. and Staicu, A.M. (2015). Longitudinal functional data analysis. Stat 4 212-226.

Examples

Not run:
##
Illustration with real data
##

data(DTI)
MS <- subset(DTI, case ==1) # subset data with multiple sclerosis (MS) case

index.na <- which(is.na(MS$cca))
Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]; sum(is.na(Y))
id <- MS$ID
visit.index <- MS$visit
visit.time <- MS$visit.time/max(MS$visit.time)

56 fpca.lfda

lfpca.dti <- fpca.lfda(Y = Y, subject.index = id,
visit.index = visit.index, obsT = visit.time,
LongiModel.method = 'lme',
mFPCA.pve = 0.95)

TT <- seq(0,1,length.out=41); ss = seq(0,1,length.out=93)

estimated mean function
persp(x = ss, y = TT, z = t(lfpca.dti$bivariateSmoothMeanFunc),

xlab="s", ylab="visit times", zlab="estimated mean fn", col='light blue')

first three estimated marginal eigenfunctions
matplot(ss, lfpca.dti$mFPCA.efunctions[,1:3], type='l', xlab='s', ylab='estimated eigen fn')

predicted scores function corresponding to first two marginal PCs
matplot(TT, do.call(cbind, lapply(lfpca.dti$sFPCA.xiHat.bySubj, function(a) a[,1])),

xlab="visit time (T)", ylab="xi_hat(T)", main = "k = 1", type='l')
matplot(TT, do.call(cbind, lapply(lfpca.dti$sFPCA.xiHat.bySubj, function(a) a[,2])),

xlab="visit time (T)", ylab="xi_hat(T)", main = "k = 2", type='l')

prediction of cca of first two subjects at T = 0, 0.5 and 1 (black, red, green)
matplot(ss, t(lfpca.dti$fitted.values.all[[1]][c(1,21,41),]),

type='l', lty = 1, ylab="", xlab="s", main = "Subject = 1")
matplot(ss, t(lfpca.dti$fitted.values.all[[2]][c(1,21,41),]),

type='l', lty = 1, ylab="", xlab="s", main = "Subject = 2")

##
Illustration with simulated data
##

###
data generation
###
set.seed(1)
n <- 100 # number of subjects
ss <- seq(0,1,length.out=101)
TT <- seq(0, 1, length.out=41)
mi <- runif(n, min=6, max=15)
ij <- sapply(mi, function(a) sort(sample(1:41, size=a, replace=FALSE)))

error variances
sigma <- 0.1
sigma_wn <- 0.2

lambdaTrue <- c(1,0.5) # True eigenvalues
eta1True <- c(0.5, 0.5^2, 0.5^3) # True eigenvalues
eta2True <- c(0.5^2, 0.5^3) # True eigenvalues

phi <- sqrt(2)*cbind(sin(2*pi*ss),cos(2*pi*ss))
psi1 <- cbind(rep(1,length(TT)), sqrt(3)*(2*TT-1), sqrt(5)*(6*TT^2-6*TT+1))
psi2 <- sqrt(2)*cbind(sin(2*pi*TT),cos(2*pi*TT))

zeta1 <- sapply(eta1True, function(a) rnorm(n = n, mean = 0, sd = a))

fpca.lfda 57

zeta2 <- sapply(eta2True, function(a) rnorm(n = n, mean = 0, sd = a))

xi1 <- unlist(lapply(1:n, function(a) (zeta1 %*% t(psi1))[a,ij[[a]]]))
xi2 <- unlist(lapply(1:n, function(a) (zeta2 %*% t(psi2))[a,ij[[a]]]))
xi <- cbind(xi1, xi2)

Tij <- unlist(lapply(1:n, function(i) TT[ij[[i]]]))
i <- unlist(lapply(1:n, function(i) rep(i, length(ij[[i]]))))
j <- unlist(lapply(1:n, function(i) 1:length(ij[[i]])))

X <- xi %*% t(phi)
meanFn <- function(s,t){ 0.5*t + 1.5*s + 1.3*s*t}
mu <- matrix(meanFn(s = rep(ss, each=length(Tij)), t=rep(Tij, length(ss))) , nrow=nrow(X))

Y <- mu + X +
matrix(rnorm(nrow(X)*ncol(phi), 0, sigma), nrow=nrow(X)) %*% t(phi) + #correlated error
matrix(rnorm(length(X), 0, sigma_wn), nrow=nrow(X)) # white noise

matplot(ss, t(Y[which(i==2),]), type='l', ylab="", xlab="functional argument",
main="observations from subject i = 2")

END: data generation

###
Illustration I : when covariance of scores from a mFPCA step is estimated using fpca.sc
###
est <- fpca.lfda(Y = Y,

subject.index = i, visit.index = j, obsT = Tij,
funcArg = ss, numTEvalPoints = length(TT),
newdata = data.frame(i = c(1:3), Ltime = c(Tij[1], 0.2, 0.5)),
fbps.knots = 35, fbps.p = 3, fbps.m = 2,
LongiModel.method='fpca.sc',
mFPCA.pve = 0.95, mFPCA.knots = 35, mFPCA.p = 3, mFPCA.m = 2,
sFPCA.pve = 0.95, sFPCA.nbasis = 10, sFPCA.npc = NULL,
gam.method = 'REML', gam.kT = 10)

mean function (true vs. estimated)
par(mfrow=c(1,2))
persp(x=TT, y = ss, z= t(sapply(TT, function(a) meanFn(s=ss, t = a))),

xlab="visit times", ylab="s", zlab="true mean fn")
persp(x = TT, y = ss, est$bivariateSmoothMeanFunc,
xlab="visit times", ylab="s", zlab="estimated mean fn", col='light blue')

################ mFPCA step ################
par(mfrow=c(1,2))

marginal covariance fn (true vs. estimated)
image(phi%*%diag(lambdaTrue)%*%t(phi))
image(est$mFPCA.covar)

eigenfunctions (true vs. estimated)
matplot(ss, phi, type='l')
matlines(ss, cbind(est$mFPCA.efunctions[,1], est$mFPCA.efunctions[,2]), type='l', lwd=2)

58 fpca.lfda

scree plot
plot(cumsum(est$mFPCA.scree.eval)/sum(est$mFPCA.scree.eval), type='l',

ylab = "Percentage of variance explained")
points(cumsum(est$mFPCA.scree.eval)/sum(est$mFPCA.scree.eval), pch=16)

################ sFPCA step ################
par(mfrow=c(1,2))
print(est$mFPCA.npc) # k = 2

covariance of score functions for k = 1 (true vs. estimated)
image(psi1%*%diag(eta1True)%*%t(psi1), main='TRUE')
image(est$sFPCA.longDynCov.k[[1]], main='ESTIMATED')

covariance of score functions for k = 2 (true vs. estimated)
image(psi2%*%diag(eta2True)%*%t(psi2))
image(est$sFPCA.longDynCov.k[[2]])

estimated scores functions
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,1])),

xlab="visit time", main="k=1", type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)

matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,2])),
xlab="visit time", main="k=2",type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)

################ In-sample and Out-of-sample Prediction ################
par(mfrow=c(1,2))
fitted
matplot(ss, t(Y[which(i==1),]), type='l', ylab="", xlab="functional argument")
matlines(ss, t(est$fitted.values[which(i==1),]), type='l', lwd=2)

sanity check : expect fitted and predicted (obtained using info from newdata)
values to be the same

plot(ss, est$fitted.values[1,], type='p', xlab="", ylab="", pch = 1, cex=1)
lines(ss, est$predicted.values[1,], type='l', lwd=2, col='blue')
all.equal(est$predicted.values[1,], est$fitted.values[1,])

###
Illustration II : when covariance of scores from a mFPCA step is estimated using lmer
###
est.lme <- fpca.lfda(Y = Y,

subject.index = i, visit.index = j, obsT = Tij,
funcArg = ss, numTEvalPoints = length(TT),
newdata = data.frame(i = c(1:3), Ltime = c(Tij[1], 0.2, 0.5)),
fbps.knots = 35, fbps.p = 3, fbps.m = 2,
LongiModel.method='lme',
mFPCA.pve = 0.95, mFPCA.knots = 35, mFPCA.p = 3, mFPCA.m = 2,
gam.method = 'REML', gam.kT = 10)

par(mfrow=c(2,2))

fpca.sc 59

fpca.sc vs. lme (assumes linearity)
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,1])),

xlab="visit time", main="k=1", type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)

matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,2])),
xlab="visit time", main="k=2",type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)

matplot(TT, do.call(cbind,lapply(est.lme$sFPCA.xiHat.bySubj, function(a) a[,1])),
xlab="visit time", main="k=1", type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)

matplot(TT, do.call(cbind,lapply(est.lme$sFPCA.xiHat.bySubj, function(a) a[,2])),
xlab="visit time", main="k=2", type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)

End(Not run)

fpca.sc Functional principal components analysis by smoothed covariance

Description

Decomposes functional observations using functional principal components analysis. A mixed
model framework is used to estimate scores and obtain variance estimates.

Usage

fpca.sc(
Y = NULL,
ydata = NULL,
Y.pred = NULL,
argvals = NULL,
random.int = FALSE,
nbasis = 10,
pve = 0.99,
npc = NULL,
var = FALSE,
simul = FALSE,
sim.alpha = 0.95,
useSymm = FALSE,
makePD = FALSE,
center = TRUE,
cov.est.method = 2,
integration = "trapezoidal"

)

60 fpca.sc

Arguments

Y, ydata the user must supply either Y, a matrix of functions observed on a regular grid,
or a data frame ydata representing irregularly observed functions. See Details.

Y.pred if desired, a matrix of functions to be approximated using the FPC decomposi-
tion.

argvals the argument values of the function evaluations in Y, defaults to a equidistant
grid from 0 to 1.

random.int If TRUE, the mean is estimated by gamm4 with random intercepts. If FALSE (the
default), the mean is estimated by gam treating all the data as independent.

nbasis number of B-spline basis functions used for estimation of the mean function and
bivariate smoothing of the covariance surface.

pve proportion of variance explained: used to choose the number of principal com-
ponents.

npc prespecified value for the number of principal components (if given, this over-
rides pve).

var TRUE or FALSE indicating whether model-based estimates for the variance of
FPCA expansions should be computed.

simul logical: should critical values be estimated for simultaneous confidence inter-
vals?

sim.alpha 1 - coverage probability of the simultaneous intervals.
useSymm logical, indicating whether to smooth only the upper triangular part of the naive

covariance (when cov.est.method==2). This can save computation time for
large data sets, and allows for covariance surfaces that are very peaked on the
diagonal.

makePD logical: should positive definiteness be enforced for the covariance surface esti-
mate?

center logical: should an estimated mean function be subtracted from Y? Set to FALSE if
you have already demeaned the data using your favorite mean function estimate.

cov.est.method covariance estimation method. If set to 1, a one-step method that applies a
bivariate smooth to the y(s1)y(s2) values. This can be very slow. If set to 2
(the default), a two-step method that obtains a naive covariance estimate which
is then smoothed.

integration quadrature method for numerical integration; only 'trapezoidal' is currently
supported.

Details

This function computes a FPC decomposition for a set of observed curves, which may be sparsely
observed and/or measured with error. A mixed model framework is used to estimate curve-specific
scores and variances.

FPCA via kernel smoothing of the covariance function, with the diagonal treated separately, was
proposed in Staniswalis and Lee (1998) and much extended by Yao et al. (2005), who introduced the
’PACE’ method. fpca.sc uses penalized splines to smooth the covariance function, as developed
by Di et al. (2009) and Goldsmith et al. (2013).

The functional data must be supplied as either

fpca.sc 61

• an n × d matrix Y, each row of which is one functional observation, with missing values
allowed; or

• a data frame ydata, with columns '.id' (which curve the point belongs to, say i), '.index'
(function argument such as time point t), and '.value' (observed function value Yi(t)).

Value

An object of class fpca containing:

Yhat FPC approximation (projection onto leading components) of Y.pred if speci-
fied, or else of Y.

Y the observed data

scores n× npc matrix of estimated FPC scores.

mu estimated mean function (or a vector of zeroes if center==FALSE).

efunctions d×npc matrix of estimated eigenfunctions of the functional covariance, i.e., the
FPC basis functions.

evalues estimated eigenvalues of the covariance operator, i.e., variances of FPC scores.

npc number of FPCs: either the supplied npc, or the minimum number of basis func-
tions needed to explain proportion pve of the variance in the observed curves.

argvals argument values of eigenfunction evaluations

pve The percent variance explained by the returned number of PCs

sigma2 estimated measurement error variance.

diag.var diagonal elements of the covariance matrices for each estimated curve.

VarMats a list containing the estimated covariance matrices for each curve in Y.

crit.val estimated critical values for constructing simultaneous confidence intervals.

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Sonja Greven <sonja.greven@stat.uni-muenchen.de>,
Lan Huo <Lan.Huo@nyumc.org>, Lei Huang <huangracer@gmail.com>, and Philip Reiss <phil.reiss@nyumc.org>

References

Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). Multilevel functional principal compo-
nent analysis. Annals of Applied Statistics, 3, 458–488.

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional
data using principal components. Biometrics, 69(1), 41–51.

Staniswalis, J. G., and Lee, J. J. (1998). Nonparametric regression analysis of longitudinal data.
Journal of the American Statistical Association, 93, 1403–1418.

Yao, F., Mueller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal
data. Journal of the American Statistical Association, 100, 577–590.

62 fpca.sc

Examples

Not run:
library(ggplot2)
library(reshape2)
data(cd4)

Fit.MM = fpca.sc(cd4, var = TRUE, simul = TRUE)

Fit.mu = data.frame(mu = Fit.MM$mu,
d = as.numeric(colnames(cd4)))

Fit.basis = data.frame(phi = Fit.MM$efunctions,
d = as.numeric(colnames(cd4)))

for one subject, examine curve estimate, pointwise and simultaneous itervals
EX = 1
EX.MM = data.frame(fitted = Fit.MM$Yhat[EX,],

ptwise.UB = Fit.MM$Yhat[EX,] + 1.96 * sqrt(Fit.MM$diag.var[EX,]),
ptwise.LB = Fit.MM$Yhat[EX,] - 1.96 * sqrt(Fit.MM$diag.var[EX,]),

simul.UB = Fit.MM$Yhat[EX,] + Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]),
simul.LB = Fit.MM$Yhat[EX,] - Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]),
d = as.numeric(colnames(cd4)))

plot data for one subject, with curve and interval estimates
EX.MM.m = melt(EX.MM, id = 'd')
ggplot(EX.MM.m, aes(x = d, y = value, group = variable, color = variable, linetype = variable)) +

geom_path() +
scale_linetype_manual(values = c(fitted = 1, ptwise.UB = 2,

ptwise.LB = 2, simul.UB = 3, simul.LB = 3)) +
scale_color_manual(values = c(fitted = 1, ptwise.UB = 2,

ptwise.LB = 2, simul.UB = 3, simul.LB = 3)) +
labs(x = 'Months since seroconversion', y = 'Total CD4 Cell Count')

plot estimated mean function
ggplot(Fit.mu, aes(x = d, y = mu)) + geom_path() +

labs(x = 'Months since seroconversion', y = 'Total CD4 Cell Count')

plot the first two estimated basis functions
Fit.basis.m = melt(Fit.basis, id = 'd')
ggplot(subset(Fit.basis.m, variable %in% c('phi.1', 'phi.2')), aes(x = d,
y = value, group = variable, color = variable)) + geom_path()

input a dataframe instead of a matrix
nid <- 20
nobs <- sample(10:20, nid, rep=TRUE)
ydata <- data.frame(

.id = rep(1:nid, nobs),

.index = round(runif(sum(nobs), 0, 1), 3))
ydata$.value <- unlist(tapply(ydata$.index,

ydata$.id,
function(x)

runif(1, -.5, .5) +
dbeta(x, runif(1, 6, 8), runif(1, 3, 5))

fpca.ssvd 63

)
)

Fit.MM = fpca.sc(ydata=ydata, var = TRUE, simul = FALSE)

End(Not run)

fpca.ssvd Smoothed FPCA via iterative penalized rank one SVDs.

Description

Implements the algorithm of Huang, Shen, Buja (2008) for finding smooth right singular vectors
of a matrix X containing (contaminated) evaluations of functional random variables on a regular,
equidistant grid. If the number of smooth SVs to extract is not specified, the function hazards a
guess for the appropriate number based on the asymptotically optimal truncation threshold under
the assumption of a low rank matrix contaminated with i.i.d. Gaussian noise with unknown variance
derived in Donoho, Gavish (2013). Please note that Donoho, Gavish (2013) should be regarded as
experimental for functional PCA, and will typically not work well if you have more observations
than grid points.

Usage

fpca.ssvd(
Y = NULL,
ydata = NULL,
argvals = NULL,
npc = NA,
center = TRUE,
maxiter = 15,
tol = 1e-04,
diffpen = 3,
gridsearch = TRUE,
alphagrid = 1.5^(-20:40),
lower.alpha = 1e-05,
upper.alpha = 1e+07,
verbose = FALSE,
integration = "trapezoidal"

)

Arguments

Y data matrix (rows: observations; columns: grid of eval. points)

ydata a data frame ydata representing irregularly observed functions. NOT IMPLE-
MENTED for this method.

64 fpca.ssvd

argvals the argument values of the function evaluations in Y, defaults to a equidistant
grid from 0 to 1. See Details.

npc how many smooth SVs to try to extract, if NA (the default) the hard thresholding
rule of Donoho, Gavish (2013) is used (see Details, References).

center center Y so that its column-means are 0? Defaults to TRUE

maxiter how many iterations of the power algorithm to perform at most (defaults to 15)

tol convergence tolerance for power algorithm (defaults to 1e-4)

diffpen difference penalty order controlling the desired smoothness of the right singular
vectors, defaults to 3 (i.e., deviations from local quadratic polynomials).

gridsearch use optimize or a grid search to find GCV-optimal smoothing parameters? de-
faults to TRUE.

alphagrid grid of smoothing parameter values for grid search

lower.alpha lower limit for for smoothing parameter if !gridsearch

upper.alpha upper limit for smoothing parameter if !gridsearch

verbose generate graphical summary of progress and diagnostic messages? defaults to
FALSE

integration ignored, see Details.

Details

Note that fpca.ssvd computes smoothed orthonormal eigenvectors of the supplied function eval-
uations (and associated scores), not (!) evaluations of the smoothed orthonormal eigenfunctions.
The smoothed orthonormal eigenvectors are then rescaled by the length of the domain defined by
argvals to have a quadratic integral approximately equal to one (instead of crossproduct equal to
one), so they approximate the behavior of smooth eigenfunctions. If argvals is not equidistant,
fpca.ssvd will simply return the smoothed eigenvectors without rescaling, with a warning.

Value

an fpca object like that returned from fpca.sc, with entries Yhat, the smoothed trajectories, Y,
the observed data, scores, the estimated FPC loadings, mu, the column means of Y (or a vector
of zeroes if !center), efunctions, the estimated smooth FPCs (note that these are orthonormal
vectors, not evaluations of orthonormal functions if argvals is not equidistant), evalues, their
associated eigenvalues, and npc, the number of smooth components that were extracted.

Author(s)

Fabian Scheipl

References

Huang, J. Z., Shen, H., and Buja, A. (2008). Functional principal components analysis via penalized
rank one approximation. Electronic Journal of Statistics, 2, 678-695

Donoho, D.L., and Gavish, M. (2013). The Optimal Hard Threshold for Singular Values is 4/sqrt(3).
eprint arXiv:1305.5870. Available from https://arxiv.org/abs/1305.5870.

https://arxiv.org/abs/1305.5870

fpca2s 65

See Also

fpca.sc and fpca.face for FPCA based on smoothing a covariance estimate; fpca2s for a faster
SVD-based approach.

Examples

as in Sec. 6.2 of Huang, Shen, Buja (2008):
set.seed(2678695)
n <- 101
m <- 101
s1 <- 20
s2 <- 10
s <- 4
t <- seq(-1, 1, l=m)
v1 <- t + sin(pi*t)
v2 <- cos(3*pi*t)
V <- cbind(v1/sqrt(sum(v1^2)), v2/sqrt(sum(v2^2)))
U <- matrix(rnorm(n*2), n, 2)
D <- diag(c(s1^2, s2^2))
eps <- matrix(rnorm(m*n, sd=s), n, m)
Y <- U%*%D%*%t(V) + eps

smoothSV <- fpca.ssvd(Y, verbose=TRUE)

layout(t(matrix(1:4, nr=2)))
clrs <- sapply(rainbow(n), function(c)

do.call(rgb, as.list(c(col2rgb(c)/255, .1))))
matplot(V, type="l", lty=1, col=1:2, xlab="",

main="FPCs: true", bty="n")
matplot(smoothSV$efunctions, type="l", lty=1, col=1:5, xlab="",

main="FPCs: estimate", bty="n")
matplot(1:m, t(U%*%D%*%t(V)), type="l", lty=1, col=clrs, xlab="", ylab="",

main="true smooth Y", bty="n")
matplot(1:m, t(smoothSV$Yhat), xlab="", ylab="",

type="l", lty=1,col=clrs, main="estimated smooth Y", bty="n")

fpca2s Functional principal component analysis by a two-stage method

Description

This function performs functional PCA by performing an ordinary singular value decomposition on
the functional data matrix, then smoothing the right singular vectors by smoothing splines.

Usage

fpca2s(
Y = NULL,
ydata = NULL,

66 fpca2s

argvals = NULL,
npc = NA,
center = TRUE,
smooth = TRUE

)

Arguments

Y data matrix (rows: observations; columns: grid of eval. points)

ydata a data frame ydata representing irregularly observed functions. NOT IMPLE-
MENTED for this method.

argvals the argument values of the function evaluations in Y, defaults to a equidistant
grid from 0 to 1. See Details.

npc how many smooth SVs to try to extract, if NA (the default) the hard thresholding
rule of Donoho, Gavish (2013) is used (see Details, References).

center center Y so that its column-means are 0? Defaults to TRUE

smooth logical; defaults to TRUE, if NULL, no smoothing of eigenvectors.

Details

Note that fpca2s computes smoothed orthonormal eigenvectors of the supplied function evalu-
ations (and associated scores), not (!) evaluations of the smoothed orthonormal eigenfunctions.
The smoothed orthonormal eigenvectors are then rescaled by the length of the domain defined by
argvals to have a quadratic integral approximately equal to one (instead of crossproduct equal to
one), so they approximate the behavior of smooth eigenfunctions. If argvals is not equidistant,
fpca2s will simply return the smoothed eigenvectors without rescaling, with a warning.

Value

an fpca object like that returned from fpca.sc, with entries Yhat, the smoothed trajectories, Y,
the observed data, scores, the estimated FPC loadings, mu, the column means of Y (or a vector
of zeroes if !center), efunctions, the estimated smooth FPCs (note that these are orthonormal
vectors, not evaluations of orthonormal functions if argvals is not equidistant), evalues, their
associated eigenvalues, and npc, the number of smooth components that were extracted.

Author(s)

Luo Xiao <lxiao@jhsph.edu>, Fabian Scheipl

References

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C., (2013), Fast covariance estimation for
high-dimensional functional data. (submitted) https://arxiv.org/abs/1306.5718.

Gavish, M., and Donoho, D. L. (2014). The optimal hard threshold for singular values is 4/sqrt(3).
IEEE Transactions on Information Theory, 60(8), 5040–5053.

https://arxiv.org/abs/1306.5718

fpca2s 67

See Also

fpca.sc and fpca.face for FPCA based on smoothing a covariance estimate; fpca.ssvd for an-
other SVD-based approach.

Examples

settings
I <- 50 # number of subjects
J <- 3000 # dimension of the data
t <- (1:J)/J # a regular grid on [0,1]
N <- 4 #number of eigenfunctions
sigma <- 2 ##standard deviation of random noises
lambdaTrue <- c(1,0.5,0.5^2,0.5^3) # True eigenvalues

case = 1
True Eigenfunctions

if(case==1) phi <- sqrt(2)*cbind(sin(2*pi*t),cos(2*pi*t),
sin(4*pi*t),cos(4*pi*t))

if(case==2) phi <- cbind(rep(1,J),sqrt(3)*(2*t-1),
sqrt(5)*(6*t^2-6*t+1),
sqrt(7)*(20*t^3-30*t^2+12*t-1))

###
######## Generate Data #############
###
xi <- matrix(rnorm(I*N),I,N);
xi <- xi%*%diag(sqrt(lambdaTrue))
X <- xi%*%t(phi); # of size I by J
Y <- X + sigma*matrix(rnorm(I*J),I,J)

results <- fpca2s(Y,npc=4,argvals=t)
###
SVDS
###
Phi <- results$efunctions
eigenvalues <- results$evalues

for(k in 1:N){
if(Phi[,k]%*%phi[,k]< 0)

Phi[,k] <- - Phi[,k]
}

plot eigenfunctions
par(mfrow=c(N/2,2))
seq <- (1:(J/10))*10
for(k in 1:N){

plot(t[seq],Phi[seq,k]*sqrt(J),type='l',lwd = 3,
ylim = c(-2,2),col = 'red',
ylab = paste('Eigenfunction ',k,sep=''),
xlab='t',main='SVDS')

68 fpcr

lines(t[seq],phi[seq,k],lwd = 2, col = 'black')
}

fpcr Functional principal component regression

Description

Implements functional principal component regression (Reiss and Ogden, 2007, 2010) for general-
ized linear models with scalar responses and functional predictors.

Usage

fpcr(
y,
xfuncs = NULL,
fdobj = NULL,
ncomp = NULL,
pve = 0.99,
nbasis = NULL,
basismat = NULL,
penmat = NULL,
argvals = NULL,
covt = NULL,
mean.signal.term = FALSE,
spline.order = NULL,
family = "gaussian",
method = "REML",
sp = NULL,
pen.order = 2,
cv1 = FALSE,
nfold = 5,
store.cv = FALSE,
store.gam = TRUE,
...

)

Arguments

y scalar outcome vector.

xfuncs for 1D predictors, an n × d matrix of signals/functional predictors, where n is
the length of y and d is the number of sites at which each signal is defined. For
2D predictors, an n×d1×d2 array representing n images of dimension d1×d2.

fdobj functional data object (class "fd") giving the functional predictors. Allowed
only for 1D functional predictors.

ncomp number of principal components. If NULL, this is chosen by pve.

fpcr 69

pve proportion of variance explained: used to choose the number of principal com-
ponents.

nbasis number(s) of B-spline basis functions: either a scalar, or a vector of values to be
compared. For 2D predictors, tensor product B-splines are used, with the given
basis dimension(s) in each direction; alternatively, nbasis can be given in the
form list(v1,v2), in which case cross-validation will be performed for each
combination of the first-dimension basis sizes in v1 and the second-dimension
basis sizes in v2. Ignored if fdobj is supplied. If fdobj is not supplied, this
defaults to 40 (i.e., 40 B-spline basis functions) for 1D predictors, and 15 (i.e.,
tensor product B-splines with 15 functions per dimension) for 2D predictors.

basismat a d×K matrix of values of K basis functions at the d sites.

penmat a K ×K matrix defining a penalty on the basis coefficients.

argvals points at which the functional predictors and the coefficient function are eval-
uated. By default, if 1D functional predictors are given by the n × d matrix
xfuncs, argvals is set to d equally spaced points from 0 to 1; if they are given
by fdobj, argvals is set to 401 equally spaced points spanning the domain of
the given functions. For 2D (image) predictors supplied as an n×d1×d2 array,
argvals defaults to a list of (1) d1 equally spaced points from 0 to 1; (2) d2
equally spaced points from 0 to 1.

covt covariates: an n-row matrix, or a vector of length n.
mean.signal.term

logical: should the mean of each subject’s signal be included as a covariate?

spline.order order of B-splines used, if fdobj is not supplied; defaults to 4, i.e., cubic B-
splines.

family generalized linear model family. Current version supports "gaussian" (the de-
fault) and "binomial".

method smoothing parameter selection method, passed to function gam; see the gam doc-
umentation for details.

sp a fixed smoothing parameter; if NULL, an optimal value is chosen (see method).

pen.order order of derivative penalty applied when estimating the coefficient function; de-
faults to 2.

cv1 logical: should cross-validation be performed to select the best model if only
one set of tuning parameters provided? By default, FALSE. Note that, if there are
multiple sets of tuning parameters provided, cv is always performed.

nfold the number of validation sets ("folds") into which the data are divided; by de-
fault, 5.

store.cv logical: should a CV result table be in the output? By default, FALSE.

store.gam logical: should the gam object be included in the output? Defaults to TRUE.

... other arguments passed to function gam.

Details

One-dimensional functional predictors can be given either in functional data object form, using
argument fdobj (see the fda package of Ramsay, Hooker and Graves, 2009, and Method 1 in the

70 fpcr

example below), or explicitly, using xfuncs (see Method 2 in the example). In the latter case,
arguments basismat and penmat can also be used to specify the basis and/or penalty matrices (see
Method 3).

For two-dimensional predictors, functional data object form is not supported. Instead of radial B-
splines as in Reiss and Ogden (2010), this implementation employs tensor product cubic B-splines,
sometimes known as bivariate O-splines (Ormerod, 2008).

For purposes of interpreting the fitted coefficients, please note that the functional predictors are
decorrelated from the scalar predictors before fitting the model (when there are no scalar predictors
other than the intercept, this just means the columns of the functional predictor matrix are de-
meaned); see section 3.2 of Reiss (2006) for details.

Value

A list with components

gamObject if store.gam = TRUE, an object of class gam (see gamObject in the mgcv pack-
age documentation).

fhat coefficient function estimate.

se pointwise Bayesian standard error.

undecor.coef undecorrelated coefficient for covariates.

argvals the supplied value of argvals.

cv.table a table giving the CV criterion for each combination of nbasis and ncomp, if
store.cv = TRUE; otherwise, the CV criterion only for the optimized combina-
tion of these parameters. Set to NULL if CV is not performed.

nbasis, ncomp when CV is performed, the values of nbasis and comp that minimize the CV
criterion.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>, Lan Huo <lan.huo@nyumc.org>, and Lei Huang <huangracer@gmail.com>

References

Ormerod, J. T. (2008). On semiparametric regression and data mining. Ph.D. dissertation, School
of Mathematics and Statistics, University of New South Wales.

Ramsay, J. O., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R and MATLAB.
New York: Springer.

Reiss, P. T. (2006). Regression with signals and images as predictors. Ph.D. dissertation, Depart-
ment of Biostatistics, Columbia University.

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional
partial least squares. Journal of the American Statistical Association, 102, 984–996.

Reiss, P. T., and Ogden, R. T. (2010). Functional generalized linear models with images as predic-
tors. Biometrics, 66, 61–69.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca Raton, FL: Chap-
man & Hall.

fpcr 71

Examples

require(fda)
1D functional predictor example

######### Octane data example #########
data(gasoline)

Create the requisite functional data objects
bbasis = create.bspline.basis(c(900, 1700), 40)
wavelengths = 2*450:850
nir <- t(gasoline$NIR)
gas.fd = smooth.basisPar(wavelengths, nir, bbasis)$fd

Method 1: Call fpcr with fdobj argument
gasmod1 = fpcr(gasoline$octane, fdobj = gas.fd, ncomp = 30)
plot(gasmod1, xlab="Wavelength")
Not run:
Method 2: Call fpcr with explicit signal matrix
gasmod2 = fpcr(gasoline$octane, xfuncs = gasoline$NIR, ncomp = 30)
Method 3: Call fpcr with explicit signal, basis, and penalty matrices
gasmod3 = fpcr(gasoline$octane, xfuncs = gasoline$NIR,

basismat = eval.basis(wavelengths, bbasis),
penmat = getbasispenalty(bbasis), ncomp = 30)

Check that all 3 calls yield essentially identical estimates
all.equal(gasmod1$fhat, gasmod2$fhat, gasmod3$fhat)
But note that, in general, you'd have to specify argvals in Method 1
to get the same coefficient function values as with Methods 2 & 3.

End(Not run)

2D functional predictor example

n = 200; d = 70

Create true coefficient function
ftrue = matrix(0,d,d)
ftrue[40:46,34:38] = 1

Generate random functional predictors, and scalar responses
ii = array(rnorm(n*d^2), dim=c(n,d,d))
iimat = ii; dim(iimat) = c(n,d^2)
yy = iimat %*% as.vector(ftrue) + rnorm(n, sd=.3)

mm = fpcr(yy, ii, ncomp=40)

image(ftrue)
contour(mm$fhat, add=TRUE)

Not run:
Cross-validation
cv.gas = fpcr(gasoline$octane, xfuncs = gasoline$NIR,

72 f_sum2

nbasis=seq(20,40,5), ncomp = seq(10,20,5), store.cv = TRUE)
image(seq(20,40,5), seq(10,20,5), cv.gas$cv.table, xlab="Basis size",

ylab="Number of PCs", xaxp=c(20,40,4), yaxp=c(10,20,2))

End(Not run)

f_sum Sum computation 1

Description

Internal function used compute a sum in FPCA-based covariance updates

Usage

f_sum(mu.q.c, sig.q.c, theta, obspts.mat)

Arguments

mu.q.c current value of mu.q.c
sig.q.c current value of sig.q.c
theta spline basis
obspts.mat matrix indicating the points on which data is observed

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

f_sum2 Sum computation 2

Description

Internal function used compute a sum in FPCA-based covariance updates

Usage

f_sum2(y, fixef, mu.q.c, kt, theta)

Arguments

y outcome matrix
fixef current estimate of fixed effects
mu.q.c current value of mu.q.c
kt number of basis functions
theta spline basis

f_sum4 73

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

f_sum4 Sum computation 2

Description

Internal function used compute a sum in FPCA-based covariance updates

Usage

f_sum4(mu.q.c, sig.q.c, mu.q.bpsi, sig.q.bpsi, theta, obspts.mat)

Arguments

mu.q.c current value of mu.q.c

sig.q.c current value of sig.q.c

mu.q.bpsi current value of mu.q.bpsi

sig.q.bpsi current value of sig.q.bpsi

theta current value of theta

obspts.mat matrix indicating where curves are observed

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

f_trace Trace computation

Description

Internal function used compute a trace in FPCA-based covariance updates

Usage

f_trace(Theta_i, Sig_q_Bpsi, Kp, Kt)

Arguments

Theta_i basis functions on observed grid points

Sig_q_Bpsi variance of FPC basis coefficients

Kp number of FPCs

Kt number of spline basis functions

74 gasoline

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

gasoline Octane numbers and NIR spectra of gasoline

Description

Near-infrared reflectance spectra and octane numbers of 60 gasoline samples. Each NIR spectrum
consists of log(1/reflectance) measurements at 401 wavelengths, in 2-nm intervals from 900 nm to
1700 nm. We thank Prof. John Kalivas for making this data set available.

Format

A data frame comprising

octane a numeric vector of octane numbers for the 60 samples.

NIR a 60 x 401 matrix of NIR spectra.

Source

Kalivas, John H. (1997). Two data sets of near infrared spectra. Chemometrics and Intelligent
Laboratory Systems, 37, 255–259.

References

For applications of functional principal component regression to this data set:

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional
partial least squares. Journal of the American Statistical Association, 102, 984–996.

Reiss, P. T., and Ogden, R. T. (2009). Smoothing parameter selection for a class of semiparametric
linear models. Journal of the Royal Statistical Society, Series B, 71(2), 505–523.

See Also

fpcr

gibbs_cs_fpca 75

gibbs_cs_fpca Cross-sectional FoSR using a Gibbs sampler and FPCA

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates
model parameters using a Gibbs sampler and estimates the residual covariance surface using FPCA.

Usage

gibbs_cs_fpca(
formula,
Kt = 5,
Kp = 2,
data = NULL,
verbose = TRUE,
N.iter = 5000,
N.burn = 1000,
SEED = NULL,
sig2.me = 0.01,
alpha = 0.1,
Aw = NULL,
Bw = NULL,
Apsi = NULL,
Bpsi = NULL

)

Arguments

formula a formula indicating the structure of the proposed model.

Kt number of spline basis functions used to estimate coefficient functions

Kp number of FPCA basis functions to be estimated

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

N.iter number of iterations used in the Gibbs sampler

N.burn number of iterations discarded as burn-in

SEED seed value to start the sampler; ensures reproducibility

sig2.me starting value for measurement error variance

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

Aw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

76 gibbs_cs_wish

Bw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

Apsi hyperparameter for inverse gamma controlling variance of spline terms for FPC
effects

Bpsi hyperparameter for inverse gamma controlling variance of spline terms for FPC
effects

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

gibbs_cs_wish Cross-sectional FoSR using a Gibbs sampler and Wishart prior

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates
model parameters using a Gibbs sampler and estimates the residual covariance surface using a
Wishart prior.

Usage

gibbs_cs_wish(
formula,
Kt = 5,
data = NULL,
verbose = TRUE,
N.iter = 5000,
N.burn = 1000,
alpha = 0.1,
min.iter = 10,
max.iter = 50,
Aw = NULL,
Bw = NULL,
v = NULL,
SEED = NULL

)

gibbs_mult_fpca 77

Arguments

formula a formula indicating the structure of the proposed model.

Kt number of spline basis functions used to estimate coefficient functions

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

N.iter number of iterations used in the Gibbs sampler

N.burn number of iterations discarded as burn-in

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

min.iter minimum number of iterations

max.iter maximum number of iterations

Aw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

Bw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

v hyperparameter for inverse Wishart prior on residual covariance

SEED seed value to start the sampler; ensures reproducibility

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

gibbs_mult_fpca Multilevel FoSR using a Gibbs sampler and FPCA

Description

Fitting function for function-on-scalar regression for longitudinal data. This function estimates
model parameters using a Gibbs sampler and estimates the residual covariance surface using FPCA.

78 gibbs_mult_fpca

Usage

gibbs_mult_fpca(
formula,
Kt = 5,
Kp = 2,
data = NULL,
verbose = TRUE,
N.iter = 5000,
N.burn = 1000,
sig2.me = 0.01,
alpha = 0.1,
SEED = NULL

)

Arguments

formula a formula indicating the structure of the proposed model.

Kt number of spline basis functions used to estimate coefficient functions

Kp number of FPCA basis functions to be estimated

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

N.iter number of iterations used in the Gibbs sampler

N.burn number of iterations discarded as burn-in

sig2.me starting value for measurement error variance

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

SEED seed value to start the sampler; ensures reproducibility

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

gibbs_mult_wish 79

gibbs_mult_wish Multilevel FoSR using a Gibbs sampler and Wishart prior

Description

Fitting function for function-on-scalar regression for multilevel data. This function estimates model
parameters using a Gibbs sampler and estimates the residual covariance surface using a Wishart
prior.

Usage

gibbs_mult_wish(
formula,
Kt = 5,
data = NULL,
verbose = TRUE,
N.iter = 5000,
N.burn = 1000,
alpha = 0.1,
Az = NULL,
Bz = NULL,
Aw = NULL,
Bw = NULL,
v = NULL,
SEED = NULL

)

Arguments

formula a formula indicating the structure of the proposed model.

Kt number of spline basis functions used to estimate coefficient functions

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

N.iter number of iterations used in the Gibbs sampler

N.burn number of iterations discarded as burn-in

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

Az hyperparameter for inverse gamma controlling variance of spline terms for subject-
level effects

Bz hyperparameter for inverse gamma controlling variance of spline terms for subject-
level effects

Aw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

80 gls_cs

Bw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

v hyperparameter for inverse Wishart prior on residual covariance

SEED seed value to start the sampler; ensures reproducibility

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

gls_cs Cross-sectional FoSR using GLS

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates
model parameters using GLS: first, an OLS estimate of spline coefficients is estimated; second, the
residual covariance is estimated using an FPC decomposition of the OLS residual curves; finally,
a GLS estimate of spline coefficients is estimated. Although this is in the ‘BayesFoSR‘ package,
there is nothing Bayesian about this FoSR.

Usage

gls_cs(
formula,
data = NULL,
Kt = 5,
basis = "bs",
sigma = NULL,
verbose = TRUE,
CI.type = "pointwise"

)

Arguments

formula a formula indicating the structure of the proposed model.

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

Kt number of spline basis functions used to estimate coefficient functions

basis basis type; options are "bs" for b-splines and "pbs" for periodic b-splines

lf 81

sigma optional covariance matrix used in GLS; if NULL, OLS will be used to estimated
fixed effects, and the covariance matrix will be estimated from the residuals.

verbose logical defaulting to TRUE – should updates on progress be printed?

CI.type Indicates CI type for coefficient functions; options are "pointwise" and "simul-
taneous"

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

lf Construct an FLM regression term

Description

Defines a term
∫
T
β(t)Xi(t)dt for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4:::gamm)

as constructed by pfr, where β(t) is an unknown coefficient function and Xi(t) is a functional pre-
dictor on the closed interval T . See smooth.terms for a list of basis and penalty options; the default
is thin-plate regression splines, as this is the default option for s.

Usage

lf(
X,
argvals = NULL,
xind = NULL,
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
presmooth = NULL,
presmooth.opts = NULL,
...

)

Arguments

X functional predictors, typically expressed as an N by J matrix, where N is the
number of columns and J is the number of evaluation points. May include miss-
ing/sparse functions, which are indicated by NA values. Alternatively, can be an
object of class "fd"; see fd.

82 lf

argvals indices of evaluation of X, i.e. (ti1, ., tiJ) for subject i. May be entered as either a
length-J vector, or as an N by J matrix. Indices may be unequally spaced. Enter-
ing as a matrix allows for different observations times for each subject. If NULL,
defaults to an equally-spaced grid between 0 or 1 (or within X$basis$rangeval
if X is a fd object.)

xind same as argvals. It will not be supported in the next version of refund.

integration method used for numerical integration. Defaults to "simpson"’s rule for calcu-
lating entries in L. Alternatively and for non-equidistant grids, "trapezoidal"
or "riemann".

L an optional N by ncol(argvals) matrix giving the weights for the numerical
integration over t. If present, overrides integration.

presmooth string indicating the method to be used for preprocessing functional predictor
prior to fitting. Options are fpca.sc, fpca.face, fpca.ssvd, fpca.bspline,
and fpca.interpolate. Defaults to NULL indicating no preprocessing. See
create.prep.func.

presmooth.opts list including options passed to preprocessing method create.prep.func.

... optional arguments for basis and penalization to be passed to mgcv::s. These
could include, for example, "bs", "k", "m", etc. See s for details.

Value

a list with the following entries

call a call to te (or s, t2) using the appropriately constructed covariate and weight
matrices

argvals the argvals argument supplied to lf

L the matrix of weights used for the integration

xindname the name used for the functional predictor variable in the formula used by mgcv

tindname the name used for argvals variable in the formula used by mgcv

LXname the name used for the L variable in the formula used by mgcv

presmooth the presmooth argument supplied to lf

prep.func a function that preprocesses data based on the preprocessing method specified
in presmooth. See create.prep.func

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com>, Fabian Scheipl, and Jonathan Gellar

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional
regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional
regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical
Society: Series C, 61(3), 453-469.

lf.vd 83

See Also

pfr, af, mgcv’s smooth.terms and linear.functional.terms; pfr for additional examples

Examples

data(DTI)
DTI1 <- DTI[DTI$visit==1 & complete.cases(DTI),]

We can apply various preprocessing options to the DTI data
fit1 <- pfr(pasat ~ lf(cca, k=30), data=DTI1)
fit2 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.sc",

presmooth.opts=list(nbasis=8, pve=.975)), data=DTI1)
fit3 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.face",

presmooth.opts=list(m=3, npc=9)), data=DTI1)
fit4 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.ssvd"), data=DTI1)
fit5 <- pfr(pasat ~ lf(cca, k=30, presmooth="bspline",

presmooth.opts=list(nbasis=8)), data=DTI1)
fit6 <- pfr(pasat ~ lf(cca, k=30, presmooth="interpolate"), data=DTI1)

All models should result in similar fits
fits <- as.data.frame(lapply(1:6, function(i)

get(paste0("fit",i))$fitted.values))
names(fits) <- c("none", "fpca.sc", "fpca.face", "fpca.ssvd", "bspline", "interpolate")
pairs(fits)

lf.vd Construct a VDFR regression term

Description

This function defines the a variable-domain functional regression term for inclusion in an gam-
formula (or bam or gamm or gamm4::gamm as constructed by pfr. These are functional predictors
for which each function is observed over a domain of different width. The default is the term
1/Ti

∫ Ti

0
Xi(t)β(t, Ti)dt, where Xi(t) is a functional predictor of length Ti and β(t, Ti) is an un-

known bivariate coefficient function. Various domain transformations are available, such as lagging
or domain-standardizing the coordinates, or parameterizing the interactions; these often result in
improved model fit. Basis choice is fully customizable using the options of s and te.

Usage

lf.vd(
X,
argvals = seq(0, 1, l = ncol(X)),
vd = NULL,
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
basistype = c("s", "te", "t2"),

84 lf.vd

transform = NULL,
mp = TRUE,
...

)

Arguments

X matrix containing variable-domain functions. Should be NxJ , where N is the
number of subjects and J is the maximum number of time points per subject.
Most rows will have NA values in the right-most columns, corresponding to un-
observed time points.

argvals indices of evaluation of X, i.e. (ti1, ., tiJ) for subject i. May be entered as either
a length-J vector, or as an N by J matrix. Indices may be unequally spaced.
Entering as a matrix allows for different observations times for each subject.

vd vector of values of containing the variable-domain width (Ti above). Defaults
to the argvals value corresponding to the last non-NA element of Xi(t).

integration method used for numerical integration. Defaults to "simpson"’s rule for calcu-
lating entries in L. Alternatively and for non-equidistant grids, "trapezoidal"
or "riemann".

L an optional N by ncol(argvals) matrix giving the weights for the numerical
integration over t. If present, overrides integration.

basistype character string indicating type of bivariate basis used. Options include "s"
(the default), "te", and "t2", which correspond to mgcv::s, mgcv::te, and
mgcv::t2.

transform character string indicating an optional basis transformation; see Details for op-
tions.

mp for transform=="linear" or transform=="quadratic", TRUE to use multiple
penalties for the smooth (one for each marginal basis). If FALSE, penalties are
concatonated into a single block-diagonal penalty matrix (with one smoothing
parameter).

... optional arguments for basis and penalization to be passed to the function in-
dicated by basistype. These could include, for example, "bs", "k", "m", etc.
See te or s for details.

Details

The variable-domain functional regression model uses the term 1
Ti

∫ Ti

0
Xi(t)β(t, Ti)dt to incorpo-

rate a functional predictor with subject-specific domain width. This term imposes a smooth (non-
parametric) interaction between t and Ti. The domain of the coefficient function is the triangular
(or trapezoidal) surface defined by t, Ti : 0 ≤ t ≤ Ti. The default basis uses bivariate thin-plate
regression splines.

Different basis transformations can result in different properties; see Gellar, et al. (2014) for a more
complete description. We make five basis transformations easily accessible using the transform
argument. This argument is a character string that can take one of the following values:

1. "lagged": transforms argvals to argvals - vd

lf.vd 85

2. "standardized": transforms argvals to argvals/vd, and then rescales vd linearly so it
ranges from 0 to 1

3. "linear": first transforms the domain as in "standardized", then parameterizes the interac-
tion with "vd" to be linear

4. "quadratic": first transforms the domain as in "standardized", then parameterizes the
interaction with "vd" to be quadratic

5. "noInteraction": first transforms the domain as in "standardized", then reduces the bi-
variate basis to univariate with no effect of vd. This would be equivalent to using lf on the
domain-standardized predictor functions.

The practical effect of using the "lagged" basis is to increase smoothness along the right (diagonal)
edge of the resultant estimate. The practical effect of using a "standardized" basis is to allow for
greater smoothness at high values of Ti compared to lower values.

These basis transformations rely on the basis constructors available in the mgcvTrans package.
For more specific control over the transformations, you can use bs="dt" and/or bs="pi"; see
smooth.construct.dt.smooth.spec or smooth.construct.pi.smooth.spec for an explana-
tion of the options (entered through the xt argument of lf.vd/s).

Note that tensor product bases are only recommended when a standardized transformation is used.
Without this transformation, just under half of the "knots" used to define the basis will fall out-
side the range of the data and have no data available to estimate them. The penalty allows the
corresponding coefficients to be estimated, but results may be unstable.

Value

a list with the following entries

call a call to s or te, using the appropriately constructed weight matrices

data data used by the call, which includes the matrices indicated by argname, Tindname,
and LXname

L the matrix of weights used for the integration

argname the name used for the argvals variable in the formula used by mgcv::gam

Tindname the name used for the Tind variable in the formula used by mgcv::gam

LXname the name of the by variable used by s or te in the formula for mgcv::gam

Author(s)

Jonathan E. Gellar <JGellar@mathematica-mpr.com>

References

Gellar, Jonathan E., Elizabeth Colantuoni, Dale M. Needham, and Ciprian M. Crainiceanu. Variable-
Domain Functional Regression for Modeling ICU Data. Journal of the American Statistical Asso-
ciation, 109(508):1425-1439, 2014.

See Also

pfr, lf, mgcv’s linear.functional.terms.

86 lf_old

Examples

Not run:
data(sofa)
fit.vd1 <- pfr(death ~ lf.vd(SOFA) + age + los,

family="binomial", data=sofa)
fit.vd2 <- pfr(death ~ lf.vd(SOFA, transform="lagged") + age + los,

family="binomial", data=sofa)
fit.vd3 <- pfr(death ~ lf.vd(SOFA, transform="standardized") + age + los,

family="binomial", data=sofa)
fit.vd4 <- pfr(death ~ lf.vd(SOFA, transform="standardized",

basistype="te") + age + los,
family="binomial", data=sofa)

fit.vd5 <- pfr(death ~ lf.vd(SOFA, transform="linear", bs="ps") + age + los,
family="binomial", data=sofa)

fit.vd6 <- pfr(death ~ lf.vd(SOFA, transform="quadratic", bs="ps") + age + los,
family="binomial", data=sofa)

fit.vd7 <- pfr(death ~ lf.vd(SOFA, transform="noInteraction", bs="ps") + age + los,
family="binomial", data=sofa)

ests <- lapply(1:7, function(i) {
c.i <- coef(get(paste0("fit.vd", i)), n=173, n2=173)
c.i[(c.i$SOFA.arg <= c.i$SOFA.vd),]

})

Try plotting for each i
i <- 1
lims <- c(-2,8)
if (requireNamespace("ggplot2", quietly = TRUE) &

requireNamespace("RColorBrewer", quietly = TRUE)) {
est <- ests[[i]]
est$value[est$value<lims[1]] <- lims[1]
est$value[est$value>lims[2]] <- lims[2]
ggplot2::ggplot(est, ggplot2::aes(SOFA.arg, SOFA.vd)) +

ggplot2::geom_tile(ggplot2::aes(colour=value, fill=value)) +
ggplot2::scale_fill_gradientn(name="", limits=lims,

colours=rev(RColorBrewer::brewer.pal(11,"Spectral"))) +
ggplot2::scale_colour_gradientn(name="", limits=lims,

colours=rev(RColorBrewer::brewer.pal(11,"Spectral"))) +
ggplot2::scale_y_continuous(expand = c(0,0)) +
ggplot2::scale_x_continuous(expand = c(0,0)) +
ggplot2::theme_bw()

}

End(Not run)

lf_old Construct an FLM regression term

lf_old 87

Description

Defines a term
∫
T
β(t)Xi(t)dt for inclusion in an gam-formula (or bam or gamm or gamm4) as con-

structed by fgam, where β(t) is an unknown coefficient function and Xi(t) is a functional predictor
on the closed interval T . Defaults to a cubic B-spline with second-order difference penalties for
estimating β(t). The functional predictor must be fully observed on a regular grid.

Usage

lf_old(
X,
argvals = seq(0, 1, l = ncol(X)),
xind = NULL,
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
splinepars = list(bs = "ps", k = min(ceiling(n/4), 40), m = c(2, 2)),
presmooth = TRUE

)

Arguments

X an N by J=ncol(argvals) matrix of function evaluations Xi(ti1), ., Xi(tiJ); i =
1, ., N.

argvals matrix (or vector) of indices of evaluations of Xi(t); i.e. a matrix with ith row
(ti1, ., tiJ)

xind same as argvals. It will not be supported in the next version of refund.

integration method used for numerical integration. Defaults to "simpson"’s rule for calcu-
lating entries in L. Alternatively and for non-equidistant grids, “trapezoidal”
or "riemann". "riemann" integration is always used if L is specified

L an optional N by ncol(argvals) matrix giving the weights for the numerical
integration over t

splinepars optional arguments specifying options for representing and penalizing the func-
tional coefficient β(t). Defaults to a cubic B-spline with second-order difference
penalties, i.e. list(bs="ps", m=c(2, 1)) See te or s for details

presmooth logical; if true, the functional predictor is pre-smoothed prior to fitting. See
smooth.basisPar

Value

a list with the following entries

1. call - a call to te (or s, t2) using the appropriately constructed covariate and weight matri-
ces

2. argvals - the argvals argument supplied to lf

3. L - the matrix of weights used for the integration

4. xindname - the name used for the functional predictor variable in the formula used by mgcv

5. tindname - the name used for argvals variable in the formula used by mgcv

88 lpeer

6. LXname - the name used for the L variable in the formula used by mgcv

7. presmooth - the presmooth argument supplied to lf

8. Xfd - an fd object from presmoothing the functional predictors using smooth.basisPar. Only
present if presmooth=TRUE. See fd

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

See Also

fgam, af, mgcv’s linear.functional.terms, fgam for examples

lpeer Longitudinal Functional Models with Structured Penalties

Description

Implements longitudinal functional model with structured penalties (Kundu et al., 2012) with scalar
outcome, single functional predictor, one or more scalar covariates and subject-specific random
intercepts through mixed model equivalence.

Usage

lpeer(
Y,
subj,
t,
funcs,
argvals = NULL,
covariates = NULL,
comm.pen = TRUE,
pentype = "Ridge",
L.user = NULL,
f_t = NULL,
Q = NULL,
phia = 10^3,
se = FALSE,
...

)

Arguments

Y vector of all outcomes over all visits or timepoints

subj vector containing the subject number for each observation

t vector containing the time information when the observation are taken

lpeer 89

funcs matrix containing observed functional predictors as rows. Rows with NA and
Inf values will be deleted.

argvals matrix (or vector) of indices of evaluations of Xi(t); i.e. a matrix with ith row
(ti1, ., tiJ)

covariates matrix of scalar covariates.

comm.pen logical value indicating whether common penalty for all the components of re-
gression function. Default is TRUE.

pentype type of penalty: either decomposition based penalty ('DECOMP') or ridge ('RIDGE')
or second-order difference penalty ('D2') or any user defined penalty ('USER').
For decomposition based penalty user need to specify Q matrix in Q argument
(see details). For user defined penalty user need to specify L matrix in L argu-
ment (see details). For Ridge and second-order difference penalty, specification
for arguments L and Q will be ignored. Default is 'RIDGE'.

L.user penalty matrix. Need to be specified with pentype='USER'. When comm.pen=TRUE,
Number of columns need to be equal with number of columns of matrix spec-
ified to funcs. When comm.pen=FALSE, Number of columns need to be equal
with the number of columns of matrix specified to funcs times the number of
components of regression function. Each row represents a constraint on func-
tional predictor. This argument will be ignored when value of pentype is other
than 'USER'.

f_t vector or matrix with number of rows equal to number of total observations
and number of columns equal to d (see details). If matrix then each column
pertains to single function of time and the value in the column represents the
realization corresponding to time vector t. The column with intercept or multiple
of intercept will be dropped. A NULL value refers to time-invariant regression
function. Default value is NULL.

Q Q matrix to derive decomposition based penalty. Need to be specified with
pentype='DECOMP'. When comm.pen=TRUE, number of columns must equal
number of columns of matrix specified to funcs. When comm.pen=FALSE, Num-
ber of columns need to be equal with the number of columns of matrix specified
to funcs times the number of components of regression function. Each row rep-
resents a basis function where functional predictor is expected lie according to
prior belief. This argument will be ignored when value of pentype is other than
'DECOMP'.

phia scalar value of a in decomposition based penalty. Needs to be specified with
pentype='DECOMP'.

se logical; calculate standard error when TRUE.

... additional arguments passed to lme.

Details

If there are any missing or infinite values in Y, subj, t, covariates, funcs and f_t, the correspond-
ing row (or observation) will be dropped, and infinite values are not allowed for these arguments.
Neither Q nor L may contain missing or infinite values. lpeer() fits the following model:

yi(t) = XT
i(t)β +

∫
Wi(t)(s)γ(t, s)ds+ Zi(t)ui + ϵi(t)

90 lpeer

where ϵi(t) N(0, σ2) and ui N(0, σ2
u). For all the observations, predictor function Wi(t)(s) is

evaluated at K sampling points. Here, regression function γ(t, s) is represented in terms of (d+1)
component functions γ0(s),..., γd(s) as follows

γ(t, s) = γ0(s) + f1(t)γ1(s) + fd(t)γd(s)

Values of yi(t), Xi(t) and Wi(t)(s) are passed through argument Y, covariates and funcs, respec-
tively. Number of elements or rows in Y, t, subj, covariates (if not NULL) and funcs need to be
equal.

Values of f1(t), ..., fd(t) are passed through f_t argument. The matrix passed through f_t argument
should have d columns where each column represents one and only one of f1(t), ..., fd(t).

The estimate of (d+1) component functions γ0(s),..., γd(s) is obtained as penalized estimated. The
following 3 types of penalties can be used for a component function:

i. Ridge: IK
ii. Second-order difference: [di,j] with di,i = di,i+2 = 1, di,i+1 = −2, otherwise di,j = 0

iii. Decomposition based penalty: bPQ + a(I − PQ) where PQ = QT (QQT)−1Q

For Decomposition based penalty the user must specify pentype= 'DECOMP' and the associated Q
matrix must be passed through the Q argument. Alternatively, one can directly specify the penalty
matrix by setting pentype= 'USER' and using the L argument to supply the associated L matrix.

If Q (or L) matrix is similar for all the component functions then argument comm.pen should have
value TRUE and in that case specified matrix to argument Q (or L) should have K columns. When
Q (or L) matrix is different for all the component functions then argument comm.pen should have
value FALSE and in that case specified matrix to argument Q (or L) should have K(d+1) columns.
Here first K columns pertains to first component function, second K columns pertains to second
component functions, and so on.

Default penalty is Ridge penalty for all the component functions and user needs to specify 'RIDGE'.
For second-order difference penalty, user needs to specify 'D2'. When pentype is 'RIDGE' or 'D2'
the value of comm.pen is always TRUE and comm.pen=FALSE will be ignored.

Value

A list containing:

fit result of the call to lme

fitted.vals predicted outcomes

BetaHat parameter estimates for scalar covariates including intercept

se.Beta standard error of parameter estimates for scalar covariates including intercept

Beta parameter estimates with standard error for scalar covariates including intercept

GammaHat estimates of components of regression functions. Each column represents one
component function.

Se.Gamma standard error associated with GammaHat

AIC AIC value of fit (smaller is better)

BIC BIC value of fit (smaller is better)

logLik (restricted) log-likelihood at convergence

lambda list of estimated smoothing parameters associated with each component function

lpeer 91

V conditional variance of Y treating only random intercept as random one.

V1 unconditional variance of Y

N number of subjects

K number of Sampling points in functional predictor

TotalObs total number of observations over all subjects

Sigma.u estimated sd of random intercept.

sigma estimated within-group error standard deviation.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu>

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with
structured penalties (arXiv:1211.4763 [stat.AP]).

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models
- partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323–353.

See Also

peer, plot.lpeer

Examples

Not run:
#--
Example 1: Estimation with Ridge penalty
#--

##Load Data
data(DTI)

Extract values for arguments for lpeer() from given data
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]

##1.1 Fit the model with single component function
gamma(t,s)=gamm0(s)
t<- DTI$visit
fit.cca.lpeer1 = lpeer(Y=DTI$pasat, t=t, subj=DTI$ID, funcs = cca)
plot(fit.cca.lpeer1)

##1.2 Fit the model with two component function
gamma(t,s)=gamm0(s) + t*gamma1(s)
fit.cca.lpeer2 = lpeer(Y=DTI$pasat, t=t, subj=DTI$ID, funcs = cca,

f_t=t, se=TRUE)
plot(fit.cca.lpeer2)

92 lpeer

#--
Example 2: Estimation with structured penalty (need structural
information about regression function or predictor function)
#--

##Load Data
data(PEER.Sim)

Extract values for arguments for lpeer() from given data
K<- 100
W<- PEER.Sim[,c(3:(K+2))]
Y<- PEER.Sim[,K+3]
t<- PEER.Sim[,2]
id<- PEER.Sim[,1]

##Load Q matrix containing structural information
data(Q)

##2.1 Fit the model with two component function
gamma(t,s)=gamm0(s) + t*gamma1(s)
Fit1<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,

pentype='DECOMP', f_t=cbind(1,t), Q=Q, se=TRUE)

Fit1$Beta
plot(Fit1)

##2.2 Fit the model with three component function
gamma(t,s)=gamm0(s) + t*gamma1(s) + t^2*gamma1(s)
Fit2<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,

pentype='DECOMP', f_t=cbind(1,t, t^2), Q=Q, se=TRUE)

Fit2$Beta
plot(Fit2)

##2.3 Fit the model with two component function with different penalties
gamma(t,s)=gamm0(s) + t*gamma1(s)
Q1<- cbind(Q, Q)
Fit3<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W,

pentype='DECOMP', f_t=cbind(1,t), Q=Q1, se=TRUE)

##2.4 Fit the model with two component function with user defined penalties
gamma(t,s)=gamm0(s) + t*gamma1(s)
phia<- 10^3
P_Q <- t(Q)%*%solve(Q%*%t(Q))%*% Q
L<- phia*(diag(K)- P_Q) + 1*P_Q
Fit4<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,

pentype='USER', f_t=cbind(1,t), L=L, se=TRUE)

L1<- adiag(L, L)
Fit5<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W,

pentype='USER', f_t=cbind(1,t), L=L1, se=TRUE)

End(Not run)

lpfr 93

lpfr Longitudinal penalized functional regression

Description

Implements longitudinal penalized functional regression (Goldsmith et al., 2012) for generalized
linear functional models with scalar outcomes and subject-specific random intercepts.

Usage

lpfr(
Y,
subj,
covariates = NULL,
funcs,
kz = 30,
kb = 30,
smooth.cov = FALSE,
family = "gaussian",
method = "REML",
...

)

Arguments

Y vector of all outcomes over all visits
subj vector containing the subject number for each observation
covariates matrix of scalar covariates
funcs matrix or list of matrices containing observed functional predictors as rows. NA

values are allowed.
kz dimension of principal components basis for the observed functional predictors
kb dimension of the truncated power series spline basis for the coefficient function
smooth.cov logical; do you wish to smooth the covariance matrix of observed functions?

Increases computation time, but results in smooth principal components
family generalized linear model family
method method for estimating the smoothing parameters; defaults to REML
... additional arguments passed to gam to fit the regression model.

Details

Functional predictors are entered as a matrix or, in the case of multiple functional predictors, as a
list of matrices using the funcs argument. Missing values are allowed in the functional predictors,
but it is assumed that they are observed over the same grid. Functional coefficients and confidence
bounds are returned as lists in the same order as provided in the funcs argument, as are principal
component and spline bases.

94 lpfr

Value

fit result of the call to gam

fitted.vals predicted outcomes

betaHat list of estimated coefficient functions
beta.covariates

parameter estimates for scalar covariates

ranef vector of subject-specific random intercepts

X design matrix used in the model fit

phi list of truncated power series spline bases for the coefficient functions

psi list of principal components basis for the functional predictors

varBetaHat list containing covariance matrices for the estimated coefficient functions

Bounds list of bounds of a 95% confidence interval for the estimated coefficient func-
tions

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

References

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional
regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical
Society: Series C, 61(3), 453–469.

Examples

Not run:
##
use longitudinal data to regress continuous outcomes on
functional predictors (continuous outcomes only recorded for
case == 1)
##

data(DTI)

subset data as needed for this example
cca = DTI$cca[which(DTI$case == 1),]
rcst = DTI$rcst[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]

note there is missingness in the functional predictors
apply(is.na(cca), 2, mean)
apply(is.na(rcst), 2, mean)

fit two models with single functional predictors and plot the results
fit.cca = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = cca, smooth.cov=FALSE)

mfpca.face 95

fit.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = rcst, smooth.cov=FALSE)

par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA")

matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST")

fit a model with two functional predictors and plot the results
fit.cca.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = list(cca,rcst),

smooth.cov=FALSE)

par(mfrow = c(1,2))
matplot(cbind(fit.cca.rcst$BetaHat[[1]], fit.cca.rcst$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA")

matplot(cbind(fit.cca.rcst$BetaHat[[2]], fit.cca.rcst$Bounds[[2]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST")

End(Not run)

mfpca.face Multilevel functional principal components analysis with fast covari-
ance estimation

Description

Decompose dense or sparse multilevel functional observations using multilevel functional principal
component analysis with the fast covariance estimation approach.

Usage

mfpca.face(
Y,
id,
visit = NULL,
twoway = TRUE,
weight = "obs",
argvals = NULL,
pve = 0.99,
npc = NULL,
p = 3,
m = 2,
knots = 35,
silent = TRUE

)

96 mfpca.face

Arguments

Y A multilevel functional dataset on a regular grid stored in a matrix. Each row of
the data is the functional observations at one visit for one subject. Missingness
is allowed and need to be labeled as NA. The data must be specified.

id A vector containing the id information to identify the subjects. The data must
be specified.

visit A vector containing information used to identify the visits. If not provided,
assume the visit id are 1,2,... for each subject.

twoway Logical, indicating whether to carry out twoway ANOVA and calculate visit-
specific means. Defaults to TRUE.

weight The way of calculating covariance. weight = "obs" indicates that the sample
covariance is weighted by observations. weight = "subj" indicates that the
sample covariance is weighted equally by subjects. Defaults to "obs".

argvals A vector containing observed locations on the functional domain.

pve Proportion of variance explained. This value is used to choose the number of
principal components for both levels.

npc Pre-specified value for the number of principal components. If given, this over-
rides pve.

p The degree of B-splines functions to use. Defaults to 3.

m The order of difference penalty to use. Defaults to 2.

knots Number of knots to use or the vectors of knots. Defaults to 35.

silent Logical, indicating whether to not display the name of each step. Defaults to
TRUE.

Details

The fast MFPCA approach (Cui et al., 2023) uses FACE (Xiao et al., 2016) to estimate covari-
ance functions and mixed model equations (MME) to predict scores for each level. As a result, it
has lower computational complexity than MFPCA (Di et al., 2009) implemented in the mfpca.sc
function, and can be applied to decompose data sets with over 10000 subjects and over 10000
dimensions.

Value

A list containing:

Yhat FPC approximation (projection onto leading components) of Y, estimated curves
for all subjects and visits

Yhat.subject Estimated subject specific curves for all subjects

Y.df The observed data

mu estimated mean function (or a vector of zeroes if center==FALSE).

eta The estimated visit specific shifts from overall mean.

scores A matrix of estimated FPC scores for level1 and level2.

mfpca.sc 97

efunctions A matrix of estimated eigenfunctions of the functional covariance, i.e., the FPC
basis functions for levels 1 and 2.

evalues Estimated eigenvalues of the covariance operator, i.e., variances of FPC scores
for levels 1 and 2.

pve The percent variance explained by the returned number of PCs.

npc Number of FPCs: either the supplied npc, or the minimum number of basis func-
tions needed to explain proportion pve of the variance in the observed curves for
levels 1 and 2.

sigma2 Estimated measurement error variance.

Author(s)

Ruonan Li <rli20@ncsu.edu>, Erjia Cui <ecui@umn.edu>

References

Cui, E., Li, R., Crainiceanu, C., and Xiao, L. (2023). Fast multilevel functional principal component
analysis. Journal of Computational and Graphical Statistics, 32(3), 366-377.

Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). Multilevel functional principal compo-
nent analysis. Annals of Applied Statistics, 3, 458-488.

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for
high-dimensional functional data. Statistics and Computing, 26, 409-421.

Examples

data(DTI)
mfpca.DTI <- mfpca.face(Y = DTI$cca, id = DTI$ID, twoway = TRUE)

mfpca.sc Multilevel functional principal components analysis by smoothed co-
variance

Description

Decomposes functional observations using functional principal components analysis. A mixed
model framework is used to estimate scores and obtain variance estimates.

Usage

mfpca.sc(
Y = NULL,
id = NULL,
visit = NULL,
twoway = FALSE,
argvals = NULL,
nbasis = 10,

98 mfpca.sc

pve = 0.99,
npc = NULL,
makePD = FALSE,
center = TRUE,
cov.est.method = 2,
integration = "trapezoidal"

)

Arguments

Y The user must supply a matrix of functions on a regular grid

id Must be supplied, a vector containing the id information used to identify clusters

visit A vector containing information used to identify visits. Defaults to NULL.

twoway logical, indicating whether to carry out twoway ANOVA and calculate visit-
specific means. Defaults to FALSE.

argvals function argument.

nbasis number of B-spline basis functions used for estimation of the mean function and
bivariate smoothing of the covariance surface.

pve proportion of variance explained: used to choose the number of principal com-
ponents.

npc prespecified value for the number of principal components (if given, this over-
rides pve).

makePD logical: should positive definiteness be enforced for the covariance surface esti-
mate? Defaults to FALSE Only FALSE is currently supported.

center logical: should an estimated mean function be subtracted from Y? Set to FALSE if
you have already demeaned the data using your favorite mean function estimate.

cov.est.method covariance estimation method. If set to 1, a one-step method that applies a
bivariate smooth to the y(s1)y(s2) values. This can be very slow. If set to 2
(the default), a two-step method that obtains a naive covariance estimate which
is then smoothed. 2 is currently supported.

integration quadrature method for numerical integration; only "trapezoidal" is currently
supported.

Details

This function computes a multilevel FPC decomposition for a set of observed curves, which may be
sparsely observed and/or measured with error. A mixed model framework is used to estimate level
1 and level 2 scores.

MFPCA was proposed in Di et al. (2009), with variations for MFPCA with sparse data in Di et al.
(2014). mfpca.sc uses penalized splines to smooth the covariance functions, as Described in Di et
al. (2009) and Goldsmith et al. (2013).

mfpca.sc 99

Value

An object of class mfpca containing:

Yhat FPC approximation (projection onto leading components) of Y, estimated curves
for all subjects and visits

Yhat.subject estimated subject specific curves for all subjects

Y the observed data

scores n× npc matrix of estimated FPC scores for level1 and level2.

mu estimated mean function (or a vector of zeroes if center==FALSE).

efunctions d×npc matrix of estimated eigenfunctions of the functional covariance, i.e., the
FPC basis functions for levels 1 and 2.

evalues estimated eigenvalues of the covariance operator, i.e., variances of FPC scores
for levels 1 and 2.

npc number of FPCs: either the supplied npc, or the minimum number of basis func-
tions needed to explain proportion pve of the variance in the observed curves for
levels 1 and 2.

sigma2 estimated measurement error variance.

eta the estimated visit specific shifts from overall mean.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>, Jeff Goldsmith <jeff.goldsmith@columbia.edu>,
and Chongzhi Di

References

Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). Multilevel functional principal compo-
nent analysis. Annals of Applied Statistics, 3, 458–488.

Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2014). Multilevel sparse functional principal
component analysis. Stat, 3, 126–143.

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional
data using principal components. Biometrics, 69(1), 41–51.

Examples

Not run:
data(DTI)
DTI = subset(DTI, Nscans < 6) ## example where all subjects have 6 or fewer visits
id = DTI$ID
Y = DTI$cca
mfpca.DTI = mfpca.sc(Y=Y, id = id, twoway = TRUE)

End(Not run)

100 ols_cs

model.matrix.pffr Obtain model matrix for a pffr fit

Description

Obtain model matrix for a pffr fit

Usage

S3 method for class 'pffr'
model.matrix(object, ...)

Arguments

object a fitted pffr-object

... other arguments, passed to predict.gam.

Value

A model matrix

Author(s)

Fabian Scheipl

ols_cs Cross-sectional FoSR using GLS

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates
model parameters using GLS: first, an OLS estimate of spline coefficients is estimated; second, the
residual covariance is estimated using an FPC decomposition of the OLS residual curves; finally,
a GLS estimate of spline coefficients is estimated. Although this is in the ‘BayesFoSR‘ package,
there is nothing Bayesian about this FoSR.

Usage

ols_cs(formula, data = NULL, Kt = 5, basis = "bs", verbose = TRUE)

pco_predict_preprocess 101

Arguments

formula a formula indicating the structure of the proposed model.

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

Kt number of spline basis functions used to estimate coefficient functions

basis basis type; options are "bs" for b-splines and "pbs" for periodic b-splines

verbose logical defaulting to TRUE – should updates on progress be printed?

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

pco_predict_preprocess

Make predictions using pco basis terms

Description

This function performs the necessary preprocessing for making predictions with gam models that in-
clude pco basis terms. The function pco_predict_preprocess builds a data.frame (or augments
an existing one) to be used with the usual predict function.

Usage

pco_predict_preprocess(model, newdata = NULL, dist_list)

Arguments

model a fitted gam model with at least one term of class "pco.smooth".

newdata data frame including the new values for any non-pco terms in the original fit. If
there were none, this can be left as NULL.

dist_list a list of n × n* matrices, one per pco term in the model, giving the distances
from the n* prediction points to the n design points (original observations). List
entry names should correspond to the names of the terms in the model (e.g.,
if the model includes a s(x) term, dist_list must include an element named
"x").

102 pcre

Details

Models with pco basis terms are fitted by inputting distances among the observations and then
regressing (with a ridge penalty) on leading principal coordinates arising from these distances. To
perform prediction, we must input the distances from the new data points to the original points, and
then "insert" the former into the principal coordinate space by the interpolation method of Gower
(1968) (see also Miller, 2012).

An example of how to use this function in practice is shown in smooth.construct.pco.smooth.spec.

Value

a data.frame with the coordinates for the new data inserted into principal coordinate space, in
addition to the supplied newdata if this was non-NULL. This can be used as the newdata argument
in a call to predict.gam.

Author(s)

David L Miller

References

Gower, J. C. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika, 55(3),
582-585.

Miller, D. L. (2012). On smooth models for complex domains and distances. PhD dissertation,
Department of Mathematical Sciences, University of Bath.

See Also

smooth.construct.pco.smooth.spec

pcre pffr-constructor for functional principal component-based functional
random intercepts.

Description

pffr-constructor for functional principal component-based functional random intercepts.

Usage

pcre(id, efunctions, evalues, yind, ...)

pcre 103

Arguments

id grouping variable a factor

efunctions matrix of eigenfunction evaluations on gridpoints yind (<length of yind> x <no.
of used eigenfunctions>)

evalues eigenvalues associated with efunctions

yind vector of gridpoints on which efunctions are evaluated.

... not used

Value

a list used internally for constructing an appropriate call to mgcv::gam

Details

Fits functional random intercepts Bi(t) for a grouping variable id using as a basis the functions
ϕm(t) in efunctions with variances λm in evalues: Bi(t) ≈

∑M
m ϕm(t)δim with independent

δim ∼ N(0, σ2λm), where σ2 is (usually) estimated and controls the overall contribution of the
Bi(t) while the relative importance of the M basisfunctions is controlled by the supplied vari-
ances lambda_m. Can be used to model smooth residuals if id is simply an index of observations.
Differing from scalar random effects in mgcv, these effects are estimated under a "sum-to-zero-for-
each-t"-constraint – specifically

∑
i b̂i(t) = 0 (not

∑
i nib̂i(t) = 0) where n_i is the number

of observed curves for subject i, so the intercept curve for models with unbalanced group sizes no
longer corresponds to the global mean function.

efunctions and evalues are typically eigenfunctions and eigenvalues of an estimated covariance
operator for the functional process to be modeled, i.e., they are a functional principal components
basis.

Author(s)

Fabian Scheipl

Examples

Not run:
residualfunction <- function(t){
#generate quintic polynomial error functions

drop(poly(t, 5)%*%rnorm(5, sd=sqrt(2:6)))
}
generate data Y(t) = mu(t) + E(t) + white noise
set.seed(1122)
n <- 50
T <- 30
t <- seq(0,1, l=T)
E(t): smooth residual functions
E <- t(replicate(n, residualfunction(t)))
int <- matrix(scale(3*dnorm(t, m=.5, sd=.5) - dbeta(t, 5, 2)), byrow=T, n, T)
Y <- int + E + matrix(.2*rnorm(n*T), n, T)
data <- data.frame(Y=I(Y))

104 peer

fit model under independence assumption:
summary(m0 <- pffr(Y ~ 1, yind=t, data=data))
get first 5 eigenfunctions of residual covariance
(i.e. first 5 functional PCs of empirical residual process)
Ehat <- resid(m0)
fpcE <- fpca.sc(Ehat, npc=5)
efunctions <- fpcE$efunctions
evalues <- fpcE$evalues
data$id <- factor(1:nrow(data))
refit model with fpc-based residuals
m1 <- pffr(Y ~ 1 + pcre(id=id, efunctions=efunctions, evalues=evalues, yind=t), yind=t, data=data)
t1 <- predict(m1, type="terms")
summary(m1)
#compare squared errors
mean((int-fitted(m0))^2)
mean((int-t1[[1]])^2)
mean((E-t1[[2]])^2)
compare fitted & true smooth residuals and fitted intercept functions:
layout(t(matrix(1:4,2,2)))
matplot(t(E), lty=1, type="l", ylim=range(E, t1[[2]]))
matplot(t(t1[[2]]), lty=1, type="l", ylim=range(E, t1[[2]]))
plot(m1, select=1, main="m1", ylim=range(Y))
lines(t, int[1,], col=rgb(1,0,0,.5))
plot(m0, select=1, main="m0", ylim=range(Y))
lines(t, int[1,], col=rgb(1,0,0,.5))

End(Not run)

peer Construct a PEER regression term in a pfr formula

Description

Defines a term
∫
T
β(t)Xi(t)dt for inclusion in a pfr formula, where β(t) is estimated with struc-

tured penalties (Randolph et al., 2012).

Usage

peer(
X,
argvals = NULL,
pentype = "RIDGE",
Q = NULL,
phia = 10^3,
L = NULL,
...

)

peer 105

Arguments

X functional predictors, typically expressed as an N by J matrix, where N is the
number of columns and J is the number of evaluation points. May include miss-
ing/sparse functions, which are indicated by NA values. Alternatively, can be an
object of class "fd"; see fd.

argvals indices of evaluation of X, i.e. (ti1, ., tiJ) for subject i. May be entered as either a
length-J vector, or as an N by J matrix. Indices may be unequally spaced. Enter-
ing as a matrix allows for different observations times for each subject. If NULL,
defaults to an equally-spaced grid between 0 or 1 (or within X$basis$rangeval
if X is a fd object.)

pentype the type of penalty to apply, one of "RIDGE", "D", "DECOMP", or "USER"; see
Details.

Q matrix Q used for pentype="DECOMP"; see Details.

phia scalar a used for pentype="DECOMP"; see Details.

L user-supplied penalty matrix for pentype="USER"; see Details.

... additional arguments to be passed to lf (and then possibly s). Arguments pro-
cessed by lf include, for example, integration for specifying the method of
numerical integration. Arguments processed by s include information related
to basis and penalization, such as m for specifying the order of the difference
penalty; See Details. xt-argument is not allowed for peer-terms and will cause
an error.

Details

peer is a wrapper for lf, which defines linear functional predictors for any type of basis. It simply
calls lf with the appropriate options for the peer basis and penalty construction. The type of
penalty is determined by the pentype argument. There are four types of penalties available:

1. pentype=="RIDGE" for a ridge penalty, the default

2. pentype=="D" for a difference penalty. The order of the difference penalty may be specified
by supplying an m argument (default is 2).

3. pentype=="DECOMP" for a decomposition-based penalty, bPQ + a(I − PQ), where PQ =
Qt(QQt)−1Q. The Q matrix must be specified by Q, and the scalar a by phia. The number
of columns of Q must be equal to the length of the data. Each row represents a basis function
where the functional predictor is expected to lie, according to prior belief.

4. pentype=="USER" for a user-specified penalty matrix, supplied by the L argument.

The original stand-alone implementation by Madan Gopal Kundu is available in peer_old.

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com> and Madan Gopal Kundu <mgkundu@iupui.edu>

106 PEER.Sim

References

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models
- partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with
structured penalties (arXiv:1211.4763 [stat.AP]).

See Also

pfr, smooth.construct.peer.smooth.spec

Examples

Not run:
#--
Example 1: Estimation with D2 penalty
#--

data(DTI)
DTI = DTI[which(DTI$case == 1),]
fit.D2 = pfr(pasat ~ peer(cca, pentype="D"), data=DTI)
plot(fit.D2)

#--
Example 2: Estimation with structured penalty (need structural
information about regression function or predictor function)
#--

data(PEER.Sim)
data(Q)
PEER.Sim1<- subset(PEER.Sim, t==0)

Setting k to max possible value
fit.decomp <- pfr(Y ~ peer(W, pentype="Decomp", Q=Q, k=99), data=PEER.Sim1)
plot(fit.decomp)

End(Not run)

PEER.Sim Simulated longitudinal data with functional predictor and scalar re-
sponse, and structural information associated with predictor function

Description

PEER.Sim contains simulated observations from 100 subjects, each observed at 4 distinct time-
points. At each timepoint bumpy predictor profile is generated randomly and the scalar response
variable is generated considering a time-varying regression function and subject intercept. Ac-
companying the functional predictor and scalar response are the subject ID numbers and time of
measurements.

peer_old 107

Format

The data frame PEER.Sim is made up of subject ID number(id), subject-specific time of measure-
ment (t), functional predictor profile (W.1-W.100) and scalar response (Y)

Details

Q represents the 7 x 100 matrix where each row provides structural information about the functional
predictor profile for data PEER.Sim. For specific details about the simulation and Q matrix, please
refer to Kundu et. al. (2012).

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with
structured penalties. (please contact J. Harezlak at <harezlak@iupui.edu>)

peer_old Functional Models with Structured Penalties

Description

Implements functional model with structured penalties (Randolph et al., 2012) with scalar outcome
and single functional predictor through mixed model equivalence.

Usage

peer_old(
Y,
funcs,
argvals = NULL,
pentype = "Ridge",
L.user = NULL,
Q = NULL,
phia = 10^3,
se = FALSE,
...

)

Arguments

Y vector of all outcomes

funcs matrix containing observed functional predictors as rows. Rows with NA and
Inf values will be deleted.

argvals matrix (or vector) of indices of evaluations of Xi(t); i.e. a matrix with ith row
(ti1, ., tiJ)

108 peer_old

pentype type of penalty. It can be either decomposition based penalty (DECOMP) or ridge
(RIDGE) or second-order difference penalty (D2) or any user defined penalty
(USER). For decomposition based penalty user need to specify Q matrix in Q
argument (see details). For user defined penalty user need to specify L matrix in
L argument (see details). For Ridge and second-order difference penalty, speci-
fication for arguments L and Q will be ignored. Default is RIDGE.

L.user penalty matrix. Need to be specified with pentype='USER'. Number of columns
need to be equal with number of columns of matrix specified to funcs. Each row
represents a constraint on functional predictor. This argument will be ignored
when value of pentype is other than USER.

Q Q matrix to derive decomposition based penalty. Need to be specified with
pentype='DECOMP'. Number of columns need to be equal with number of columns
of matrix specified to funcs. Each row represents a basis function where func-
tional predictor is expected lie according to prior belief. This argument will be
ignored when value of pentype is other than DECOMP.

phia Scalar value of a in decomposition based penalty. Need to be specified with
pentype='DECOMP'.

se logical; calculate standard error when TRUE.

... additional arguments passed to the lme function.

Details

If there are any missing or infinite values in Y, and funcs, the corresponding row (or observation)
will be dropped. Neither Q nor L may contain missing or infinite values.

peer_old() fits the following model:

yi =
∫
Wi(s)γ(s)ds+ ϵi

where ϵi N(0, σ2). For all the observations, predictor function Wi(s) is evaluated at K sampling
points. Here, γ(s) denotes the regression function.

Values of yi and Wi(s)are passed through argument Y and funcs, respectively. Number of elements
or rows in Y and funcs need to be equal.

The estimate of regression functions γ(s) is obtained as penalized estimated. Following 3 types of
penalties can be used:

i. Ridge: IK

ii. Second-order difference: [di,j] with di,i = di,i+2 = 1, di,i+1 = −2, otherwise di,i = 0

iii. Decomposition based penalty: bPQ + a(I − PQ) where PQ = QT (QQT)−1Q

For Decomposition based penalty user need to specify pentype='DECOMP' and associated Q matrix
need to be passed through Q argument.

Alternatively, user can pass directly penalty matrix through argument L. For this user need to specify
pentype='USER' and associated L matrix need to be passed through L argument.

Default penalty is Ridge penalty and user needs to specify RIDGE. For second-order difference
penalty, user needs to specify D2.

peer_old 109

Value

a list containing:

fit result of the call to lme

fitted.vals predicted outcomes

Gamma estimates with standard error for regression function

GammaHat estimates of regression function

se.Gamma standard error associated with GammaHat

AIC AIC value of fit (smaller is better)

BIC BIC value of fit (smaller is better)

logLik (restricted) log-likelihood at convergence

lambda estimates of smoothing parameter

N number of subjects

K number of Sampling points in functional predictor

sigma estimated within-group error standard deviation.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu>

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with
structured penalties (arXiv:1211.4763 [stat.AP]).

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models
- partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323–353.

See Also

lpeer, plot.peer

Examples

Not run:
#--
Example 1: Estimation with D2 penalty
#--

Load Data
data(DTI)

Extract values for arguments for peer() from given data
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]

##1.1 Fit the model
fit.cca.peer1 = peer(Y=DTI$pasat, funcs = cca, pentype='D2', se=TRUE)

110 pffr

plot(fit.cca.peer1)

#--
Example 2: Estimation with structured penalty (need structural
information about regression function or predictor function)
#--

Load Data
data(PEER.Sim)

Extract values for arguments for peer() from given data
PEER.Sim1<- subset(PEER.Sim, t==0)
W<- PEER.Sim1$W
Y<- PEER.Sim1$Y

##Load Q matrix containing structural information
data(Q)

##2.1 Fit the model
Fit1<- peer(Y=Y, funcs=W, pentype='Decomp', Q=Q, se=TRUE)
plot(Fit1)

End(Not run)

pffr Penalized flexible functional regression

Description

Implements additive regression for functional and scalar covariates and functional responses. This
function is a wrapper for mgcv’s gam and its siblings to fit models of the general form
E(Yi(t)) = g(µ(t) +

∫
Xi(s)β(s, t)ds+ f(z1i, t) + f(z2i) + z3iβ3(t) + . . .)

with a functional (but not necessarily continuous) response Y (t), response function g, (optional)
smooth intercept µ(t), (multiple) functional covariates X(t) and scalar covariates z1, z2, etc.

Usage

pffr(
formula,
yind,
data = NULL,
ydata = NULL,
algorithm = NA,
method = "REML",
tensortype = c("ti", "t2"),
bs.yindex = list(bs = "ps", k = 5, m = c(2, 1)),
bs.int = list(bs = "ps", k = 20, m = c(2, 1)),
...

)

pffr 111

Arguments

formula a formula with special terms as for gam, with additional special terms ff(),
sff(),ffpc(), pcre() and c().

yind a vector with length equal to the number of columns of the matrix of functional
responses giving the vector of evaluation points (t1, . . . , tG). If not supplied,
yind is set to 1:ncol(<response>).

data an (optional) data.frame containing the data. Can also be a named list for
regular data. Functional covariates have to be supplied as <no. of observations>
by <no. of evaluations> matrices, i.e. each row is one functional observation.

ydata an (optional) data.frame supplying functional responses that are not observed
on a regular grid. See Details.

algorithm the name of the function used to estimate the model. Defaults to gam if the matrix
of functional responses has less than 2e5 data points and to bam if not. 'gamm',
'gamm4' and 'jagam' are valid options as well. See Details for 'gamm4' and
'jagam'.

method Defaults to "REML"-estimation, including of unknown scale. If algorithm="bam",
the default is switched to "fREML". See gam and bam for details.

tensortype which typ of tensor product splines to use. One of "ti" or "t2", defaults to ti.
t2-type terms do not enforce the more suitable special constraints for functional
regression, see Details.

bs.yindex a named (!) list giving the parameters for spline bases on the index of the func-
tional response. Defaults to list(bs="ps", k=5,m=c(2, 1)), i.e. 5 cubic B-
splines bases with first order difference penalty.

bs.int a named (!) list giving the parameters for the spline basis for the global func-
tional intercept. Defaults to list(bs="ps", k=20,m=c(2, 1)), i.e. 20 cubic
B-splines bases with first order difference penalty.

... additional arguments that are valid for gam, bam, 'gamm4' or 'jagam'. subset
is not implemented.

Value

A fitted pffr-object, which is a gam-object with some additional information in an pffr-entry. If
algorithm is "gamm" or "gamm4", only the $gam part of the returned list is modified in this way.
Available methods/functions to postprocess fitted models: summary.pffr, plot.pffr, coef.pffr,
fitted.pffr, residuals.pffr, predict.pffr, model.matrix.pffr, qq.pffr, pffr.check.
If algorithm is "jagam", only the location of the model file and the usual jagam-object are re-
turned, you have to run the sampler yourself.

Details

The routine can estimate

1. linear functional effects of scalar (numeric or factor) covariates that vary smoothly over t (e.g.
z1iβ1(t), specified as ~z1),

112 pffr

2. nonlinear, and possibly multivariate functional effects of (one or multiple) scalar covariates z
that vary smoothly over the index t of Y (t) (e.g. f(z2i, t), specified in the formula simply as
~s(z2))

3. (nonlinear) effects of scalar covariates that are constant over t (e.g. f(z3i), specified as
~c(s(z3)), or β3z3i, specified as ~c(z3)),

4. function-on-function regression terms (e.g.
∫
Xi(s)β(s, t)ds, specified as ~ff(X, yindex=t,

xindex=s), see ff). Terms given by sff and ffpc provide nonlinear and FPC-based effects
of functional covariates, respectively.

5. concurrent effects of functional covariates X measured on the same grid as the response are
specified as follows: ~s(x) for a smooth, index-varying effect f(X(t), t), ~x for a linear
index-varying effect X(t)β(t), ~c(s(x)) for a constant nonlinear effect f(X(t)), ~c(x) for
a constant linear effect X(t)β.

6. Smooth functional random intercepts b0g(i)(t) for a grouping variable g with levels g(i) can
be specified via ~s(g, bs="re")), functional random slopes uib1g(i)(t) in a numeric vari-
able u via ~s(g, u, bs="re")). Scheipl, Staicu, Greven (2013) contains code examples for
modeling correlated functional random intercepts using mrf-terms.

Use the c()-notation to denote model terms that are constant over the index of the functional re-
sponse.

Internally, univariate smooth terms without a c()-wrapper are expanded into bivariate smooth terms
in the original covariate and the index of the functional response. Bivariate smooth terms (s(),
te() or t2()) without a c()-wrapper are expanded into trivariate smooth terms in the original co-
variates and the index of the functional response. Linear terms for scalar covariates or categorical
covariates are expanded into varying coefficient terms, varying smoothly over the index of the func-
tional response. For factor variables, a separate smooth function with its own smoothing parameter
is estimated for each level of the factor.

The marginal spline basis used for the index of the the functional response is specified via the
global argument bs.yindex. If necessary, this can be overriden for any specific term by supplying
a bs.yindex-argument to that term in the formula, e.g. ~s(x, bs.yindex=list(bs="tp", k=7))
would yield a tensor product spline over x and the index of the response in which the marginal basis
for the index of the response are 7 cubic thin-plate spline functions (overriding the global default
for the basis and penalty on the index of the response given by the global bs.yindex-argument).
Use ~-1 + c(1) + ... to specify a model with only a constant and no functional intercept.

The functional covariates have to be supplied as a n by <no. of evaluations> matrices, i.e. each row
is one functional observation. For data on a regular grid, the functional response is supplied in the
same format, i.e. as a matrix-valued entry in data, which can contain missing values.

If the functional responses are sparse or irregular (i.e., not evaluated on the same evaluation points
across all observations), the ydata-argument can be used to specify the responses: ydata must be
a data.frame with 3 columns called '.obs', '.index', '.value' which specify which curve
the point belongs to ('.obs'=i), at which t it was observed ('.index'=t), and the observed value
('.value'=Yi(t)). Note that the vector of unique sorted entries in ydata$.obs must be equal to
rownames(data) to ensure the correct association of entries in ydata to the corresponding rows of
data. For both regular and irregular functional responses, the model is then fitted with the data in

pffr 113

long format, i.e., for data on a grid the rows of the matrix of the functional response evaluations
Yi(t) are stacked into one long vector and the covariates are expanded/repeated correspondingly.
This means the models get quite big fairly fast, since the effective number of rows in the design
matrix is number of observations times number of evaluations of Y (t) per observation.

Note that pffr does not use mgcv’s default identifiability constraints (i.e.,
∑

i,t f̂(zi, xi, t) = 0 or∑
i,t f̂(xi, t) = 0) for tensor product terms whose marginals include the index t of the functional

response. Instead,
∑

i f̂(zi, xi, t) = 0 for all t is enforced, so that effects varying over t can be
interpreted as local deviations from the global functional intercept. This is achieved by using ti-
terms with a suitably modified mc-argument. Note that this is not possible if algorithm='gamm4'
since only t2-type terms can then be used and these modified constraints are not available for t2.
We recommend using centered scalar covariates for terms like zβ(t) (~z) and centered functional
covariates with

∑
i Xi(t) = 0 for all t in ff-terms so that the global functional intercept can be

interpreted as the global mean function.

The family-argument can be used to specify all of the response distributions and link functions
described in family.mgcv. Note that family = "gaulss" is treated in a special way: Users can
supply the formula for the variance by supplying a special argument varformula, but this is not
modified in the way that the formula-argument is but handed over to the fitter directly, so this is for
expert use only. If varformula is not given, pffr will use the parameters from argument bs.int
to define a spline basis along the index of the response, i.e., a smooth variance function over t for
responses $Y(t)$.

Author(s)

Fabian Scheipl, Sonja Greven

References

Ivanescu, A., Staicu, A.-M., Scheipl, F. and Greven, S. (2015). Penalized function-on-function re-
gression. Computational Statistics, 30(2):539–568. https://biostats.bepress.com/jhubiostat/
paper254/

Scheipl, F., Staicu, A.-M. and Greven, S. (2015). Functional Additive Mixed Models. Journal of
Computational & Graphical Statistics, 24(2): 477–501. https://arxiv.org/abs/1207.5947

F. Scheipl, J. Gertheiss, S. Greven (2016): Generalized Functional Additive Mixed Models, Elec-
tronic Journal of Statistics, 10(1), 1455–1492. https://projecteuclid.org/journals/electronic-journal-of-statistics/
volume-10/issue-1/Generalized-functional-additive-mixed-models/10.1214/16-EJS1145.
full

See Also

smooth.terms for details of mgcv syntax and available spline bases and penalties.

Examples

###
univariate model:
Y(t) = f(t) + \int X1(s)\beta(s,t)ds + eps
set.seed(2121)

https://biostats.bepress.com/jhubiostat/paper254/
https://biostats.bepress.com/jhubiostat/paper254/
https://arxiv.org/abs/1207.5947
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-10/issue-1/Generalized-functional-additive-mixed-models/10.1214/16-EJS1145.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-10/issue-1/Generalized-functional-additive-mixed-models/10.1214/16-EJS1145.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-10/issue-1/Generalized-functional-additive-mixed-models/10.1214/16-EJS1145.full

114 pffr.check

data1 <- pffrSim(scenario="ff", n=40)
t <- attr(data1, "yindex")
s <- attr(data1, "xindex")
m1 <- pffr(Y ~ ff(X1, xind=s), yind=t, data=data1)
summary(m1)
plot(m1, pages=1)

Not run:
###
multivariate model:
E(Y(t)) = \beta_0(t) + \int X1(s)\beta_1(s,t)ds + xlin \beta_3(t) +
f_1(xte1, xte2) + f_2(xsmoo, t) + \beta_4 xconst
data2 <- pffrSim(scenario="all", n=200)
t <- attr(data2, "yindex")
s <- attr(data2, "xindex")
m2 <- pffr(Y ~ ff(X1, xind=s) + #linear function-on-function

xlin + #varying coefficient term
c(te(xte1, xte2)) + #bivariate smooth term in xte1 & xte2, const. over Y-index

s(xsmoo) + #smooth effect of xsmoo varying over Y-index
c(xconst), # linear effect of xconst constant over Y-index

yind=t,
data=data2)

summary(m2)
plot(m2)
str(coef(m2))
convenience functions:
preddata <- pffrSim(scenario="all", n=20)
str(predict(m2, newdata=preddata))
str(predict(m2, type="terms"))
cm2 <- coef(m2)
cm2$pterms
str(cm2$smterms, 2)
str(cm2$smterms[["s(xsmoo)"]]$coef)

###
sparse data (80% missing on a regular grid):
set.seed(88182004)
data3 <- pffrSim(scenario=c("int", "smoo"), n=100, propmissing=0.8)
t <- attr(data3, "yindex")
m3.sparse <- pffr(Y ~ s(xsmoo), data=data3$data, ydata=data3$ydata, yind=t)
summary(m3.sparse)
plot(m3.sparse,pages=1)

End(Not run)

pffr.check Some diagnostics for a fitted pffr model

Description

This is simply a wrapper for gam.check().

pffrGLS 115

Usage

pffr.check(
b,
old.style = FALSE,
type = c("deviance", "pearson", "response"),
k.sample = 5000,
k.rep = 200,
rep = 0,
level = 0.9,
rl.col = 2,
rep.col = "gray80",
...

)

Arguments

b a fitted pffr-object

old.style If you want old fashioned plots, exactly as in Wood, 2006, set to TRUE.

type type of residuals, see residuals.gam, used in all plots.

k.sample Above this k testing uses a random sub-sample of data.

k.rep how many re-shuffles to do to get p-value for k testing.

rep passed to qq.gam when old.style is FALSE.

level passed to qq.gam when old.style is FALSE.

rl.col passed to qq.gam when old.style is FALSE.

rep.col passed to qq.gam when old.style is FALSE.

... extra graphics parameters to pass to plotting functions.

pffrGLS Penalized function-on-function regression with non-i.i.d. residuals

Description

Implements additive regression for functional and scalar covariates and functional responses. This
function is a wrapper for mgcv’s gam and its siblings to fit models of the general form
Yi(t) = µ(t) +

∫
Xi(s)β(s, t)ds+ f(z1i, t) + f(z2i) + z3iβ3(t) + · · ·+ Ei(t))

with a functional (but not necessarily continuous) response Y (t), (optional) smooth intercept µ(t),
(multiple) functional covariates X(t) and scalar covariates z1, z2, etc. The residual functions
Ei(t) ∼ GP (0,K(t, t′)) are assumed to be i.i.d. realizations of a Gaussian process. An estimate of
the covariance operator K(t, t′) evaluated on yind has to be supplied in the hatSigma-argument.

116 pffrGLS

Usage

pffrGLS(
formula,
yind,
hatSigma,
algorithm = NA,
method = "REML",
tensortype = c("te", "t2"),
bs.yindex = list(bs = "ps", k = 5, m = c(2, 1)),
bs.int = list(bs = "ps", k = 20, m = c(2, 1)),
cond.cutoff = 500,
...

)

Arguments

formula a formula with special terms as for gam, with additional special terms ff() and
c(). See pffr.

yind a vector with length equal to the number of columns of the matrix of functional
responses giving the vector of evaluation points (t1, . . . , tG). see pffr

hatSigma (an estimate of) the within-observation covariance (along the responses’ index),
evaluated at yind. See Details.

algorithm the name of the function used to estimate the model. Defaults to gam if the
matrix of functional responses has less than 2e5 data points and to bam if not.
"gamm" (see gamm) and "gamm4" (see gamm4) are valid options as well.

method See pffr

tensortype See pffr

bs.yindex See pffr

bs.int See pffr

cond.cutoff if the condition number of hatSigma is greater than this, hatSigma is made
“more” positive-definite via nearPD to ensure a condition number equal to cond.cutoff.
Defaults to 500.

... additional arguments that are valid for gam or bam. See pffr.

Value

a fitted pffr-object, see pffr.

Details

Note that hatSigma has to be positive definite. If hatSigma is close to positive semi-definite or
badly conditioned, estimated standard errors become unstable (typically much too small). pffrGLS
will try to diagnose this and issue a warning. The danger is especially big if the number of functional
observations is smaller than the number of gridpoints (i.e, length(yind)), since the raw covariance
estimate will not have full rank.
Please see pffr for details on model specification and implementation.

pffrSim 117

THIS IS AN EXPERIMENTAL VERSION AND NOT WELL TESTED YET – USE AT YOUR
OWN RISK.

Author(s)

Fabian Scheipl

See Also

pffr, fpca.sc

pffrSim Simulate example data for pffr

Description

Simulates example data for pffr from a variety of terms. Scenario "all" generates data from a
complex multivariate model

Yi(t) = µ(t)+

∫
X1i(s)β1(s, t)ds+xlinβ3(t)+f(xte1, xte2)+f(xsmoo, t)+β4xconst+f(xfactor, t)+ϵi(t)

. Scenarios "int", "ff", "lin", "te", "smoo", "const", "factor", generate data from simpler models
containing only the respective term(s) in the model equation given above. Specifying a vector-
valued scenario will generate data from a combination of the respective terms. Sparse/irregular
response trajectories can be generated by setting propmissing to something greater than 0 (and
smaller than 1). The return object then also includes a ydata-item with the sparsified data.

Usage

pffrSim(
scenario = "all",
n = 100,
nxgrid = 40,
nygrid = 60,
SNR = 10,
propmissing = 0,
limits = NULL

)

Arguments

scenario see Description

n number of observations

nxgrid number of evaluation points of functional covariates

nygrid number of evaluation points of the functional response

118 pfr

SNR the signal-to-noise ratio for the generated data: empirical variance of the additive
predictor divided by variance of the errors.

propmissing proportion of missing data in the response, default = 0. See Details.

limits a function that defines an integration range, see ff

Details

See source code for details.

Value

a named list with the simulated data, and the true components of the predictor etc as attributes.

pfr Penalized Functional Regression

Description

Implements various approaches to penalized scalar-on-function regression. These techniques in-
clude Penalized Functional Regression (Goldsmith et al., 2011), Longitudinal Penalized Functional
Regression (Goldsmith, et al., 2012), Functional Principal Component Regression (Reiss and Og-
den, 2007), Partially Empirical Eigenvectors for Regression (Randolph et al., 2012), Functional
Generalized Additive Models (McLean et al., 2013), and Variable-Domain Functional Regression
(Gellar et al., 2014). This function is a wrapper for mgcv’s gam and its siblings to fit models with a
scalar (but not necessarily continuous) response.

Usage

pfr(formula = NULL, fitter = NA, method = "REML", ...)

Arguments

formula a formula that could contain any of the following special terms: lf(), af(),
lf.vd(), peer(), fpc(), or re(); also mgcv’s s(), te(), or t2().

fitter the name of the function used to estimate the model. Defaults to gam if the
matrix of functional responses has less than 2e5 data points and to bam if not.
"gamm" (see gamm) and "gamm4" (see gamm4) are valid options as well.

method The smoothing parameter estimation method. Default is "REML". For options,
see gam.

... additional arguments that are valid for gam or bam. These include data and
family to specify the input data and outcome family, as well as many options to
control the estimation.

pfr 119

Value

A fitted pfr-object, which is a gam-object with some additional information in a $pfr-element. If
fitter is "gamm" or "gamm4", only the $gam part of the returned list is modified in this way.

Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com>, Mathew W. McLean, Jeff Goldsmith, and
Fabian Scheipl

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional
regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional
regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical
Society: Series C, 61(3), 453-469.

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional
partial least squares. Journal of the American Statistical Association, 102, 984-996.

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models
- partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional gen-
eralized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269.
Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

Gellar, J. E., Colantuoni, E., Needham, D. M., and Crainiceanu, C. M. (2014). Variable-Domain
Functional Regression for Modeling ICU Data. Journal of the American Statistical Association,
109(508): 1425-1439.

See Also

af, lf, lf.vd, fpc, peer, re.

Examples

See lf(), lf.vd(), af(), fpc(), and peer() for additional examples

data(DTI)
DTI1 <- DTI[DTI$visit==1 & complete.cases(DTI),]
par(mfrow=c(1,2))

Fit model with linear functional term for CCA
fit.lf <- pfr(pasat ~ lf(cca, k=30, bs="ps"), data=DTI1)
plot(fit.lf, ylab=expression(paste(beta(t))), xlab="t")
Not run:
Alternative way to plot

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/

120 pfr_old

bhat.lf <- coef(fit.lf, n=101)
bhat.lf$upper <- bhat.lf$value + 1.96*bhat.lf$se
bhat.lf$lower <- bhat.lf$value - 1.96*bhat.lf$se
matplot(bhat.lf$cca.argvals, bhat.lf[,c("value", "upper", "lower")],

type="l", lty=c(1,2,2), col=1,
ylab=expression(paste(beta(t))), xlab="t")

Fit model with additive functional term for CCA, using tensor product basis
fit.af <- pfr(pasat ~ af(cca, Qtransform=TRUE, k=c(7,7)), data=DTI1)
plot(fit.af, scheme=2, xlab="t", ylab="cca(t)", main="Tensor Product")
plot(fit.af, scheme=2, Qtransform=TRUE,

xlab="t", ylab="cca(t)", main="Tensor Product")

Change basistype to thin-plate regression splines
fit.af.s <- pfr(pasat ~ af(cca, basistype="s", Qtransform=TRUE, k=50),

data=DTI1)
plot(fit.af.s, scheme=2, xlab="t", ylab="cca(t)", main="TPRS", rug=FALSE)
plot(fit.af.s, scheme=2, Qtransform=TRUE,

xlab="t", ylab="cca(t)", main="TPRS", rug=FALSE)

Visualize bivariate function at various values of x
par(mfrow=c(2,2))
vis.pfr(fit.af, xval=.2)
vis.pfr(fit.af, xval=.4)
vis.pfr(fit.af, xval=.6)
vis.pfr(fit.af, xval=.8)

Include random intercept for subject
DTI.re <- DTI[complete.cases(DTI$cca),]
DTI.re$ID <- factor(DTI.re$ID)
fit.re <- pfr(pasat ~ lf(cca, k=30) + re(ID), data=DTI.re)
coef.re <- coef(fit.re)
par(mfrow=c(1,2))
plot(fit.re)

FPCR_R Model
fit.fpc <- pfr(pasat ~ fpc(cca), data=DTI.re)
plot(fit.fpc)

PEER Model with second order difference penalty
DTI.use <- DTI[DTI$case==1,]
DTI.use <- DTI.use[complete.cases(DTI.use$cca),]
fit.peer <- pfr(pasat ~ peer(cca, argvals=seq(0,1,length=93),

integration="riemann", pentype="D"), data=DTI.use)
plot(fit.peer)

End(Not run)

pfr_old Penalized Functional Regression (old version)

pfr_old 121

Description

This code implements the function pfr() available in refund 0.1-11. It is included to maintain back-
wards compatibility.

Functional predictors are entered as a matrix or, in the case of multiple functional predictors, as a
list of matrices using the funcs argument. Missing values are allowed in the functional predictors,
but it is assumed that they are observed over the same grid. Functional coefficients and confidence
bounds are returned as lists in the same order as provided in the funcs argument, as are principal
component and spline bases. Increasing values of nbasis will increase computational time and the
values of nbasis, kz, and kb in relation to each other may need to be adjusted in application-specific
ways.

Usage

pfr_old(
Y,
subj = NULL,
covariates = NULL,
funcs,
kz = 10,
kb = 30,
nbasis = 10,
family = "gaussian",
method = "REML",
smooth.option = "fpca.sc",
pve = 0.99,
...

)

Arguments

Y vector of all outcomes over all visits

subj vector containing the subject number for each observation

covariates matrix of scalar covariates

funcs matrix, or list of matrices, containing observed functional predictors as rows.
NA values are allowed.

kz can be NULL; can be a scalar, in which case this will be the dimension of prin-
cipal components basis for each and every observed functional predictors; can
be a vector of length equal to the number of functional predictors, in which case
each element will correspond to the dimension of principal components basis
for the corresponding observed functional predictors

kb dimension of the B-spline basis for the coefficient function (note: this is a
change from versions 0.1-7 and previous)

nbasis passed to refund::fpca.sc (note: using fpca.sc is a change from versions 0.1-7
and previous)

family generalized linear model family

method method for estimating the smoothing parameters; defaults to REML

122 pfr_old

smooth.option method to do FPC decomposition on the predictors. Two options available –
"fpca.sc" or "fpca.face". If using "fpca.sc", a number less than 35 for nbasis
should be used while if using "fpca.face",35 or more is recommended.

pve proportion of variance explained used to choose the number of principal com-
ponents to be included in the expansion.

... additional arguments passed to gam to fit the regression model.

Value

fit result of the call to gam

fitted.vals predicted outcomes
fitted.vals.level.0

predicted outcomes at population level
fitted.vals.level.1

predicted outcomes at subject-specific level (if applicable)

betaHat list of estimated coefficient functions
beta.covariates

parameter estimates for scalar covariates

varBetaHat list containing covariance matrices for the estimated coefficient functions

Bounds list of bounds of a pointwise 95% confidence interval for the estimated coeffi-
cient functions

X design matrix used in the model fit

D penalty matrix used in the model fit

phi list of B-spline bases for the coefficient functions

psi list of principal components basis for the functional predictors

C stacked row-specific principal component scores

J transpose of psi matrix multiplied by phi

CJ C matrix multiplied J

Z1 design matrix of random intercepts

subj subject identifiers as specified by user

fixed.mat the fixed effects design matrix of the pfr as a mixed model

rand.mat the fixed effects design matrix of the pfr as a mixed model

N_subj the number of unique subjects, if subj is specified

p number of scalar covariates

N.pred number of functional covariates

kz as specified

kz.adj For smooth.option="fpca.sc", will be same as kz (or a vector of repeated values
of the specified scalar kz). For smooth.option="fpca.face", will be the corre-
sponding number of principal components for each functional predictor as de-
termined by fpca.face; will be less than or equal to kz on an elemental-wise
level.

pfr_old 123

kb as specified

nbasis as specified

totD number of penalty matrices created for mgcv::gam

funcs as specified

covariates as specified

smooth.option as specified

Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Bruce Swihart <bruce.swihart@gmail.com> and Jeff Goldsmith <jeff.goldsmith@columbia.edu>

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional
regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional
regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical
Society: Series C, 61(3), 453-469.

Swihart, Bruce J., Goldsmith, Jeff; and Crainiceanu, Ciprian M. (July 2012). Testing for functional
effects. Johns Hopkins University Dept. of Biostatistics Working Paper 247, available at https:
//biostats.bepress.com/jhubiostat/paper247/ American Statistical Association, 109(508):
1425-1439.

See Also

rlrt.pfr, predict.pfr.

Examples

Not run:
##
######### DTI Data Example #########
##

##
For more about this example, see Swihart et al. 2013
##

load and reassign the data;
data(DTI2)
Y <- DTI2$pasat ## PASAT outcome
id <- DTI2$id ## subject id
W1 <- DTI2$cca ## Corpus Callosum
W2 <- DTI2$rcst ## Right corticospinal
V <- DTI2$visit ## visit

https://biostats.bepress.com/jhubiostat/paper247/
https://biostats.bepress.com/jhubiostat/paper247/

124 pfr_old

prep scalar covariate
visit.1.rest <- matrix(as.numeric(V > 1), ncol=1)
covar.in <- visit.1.rest

note there is missingness in the functional predictors
apply(is.na(W1), 2, mean)
apply(is.na(W2), 2, mean)

fit two univariate models
pfr.obj.t1 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1), subj = id, kz = 10, kb = 50)
pfr.obj.t2 <- pfr(Y = Y, covariates=covar.in, funcs = list(W2), subj = id, kz = 10, kb = 50)

one model with two functional predictors using "smooth.face"
for smoothing predictors
pfr.obj.t3 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1, W2),

subj = id, kz = 10, kb = 50, nbasis=35,smooth.option="fpca.face")

plot the coefficient function and bounds
dev.new()
par(mfrow=c(2,2))
ran <- c(-2,.5)
matplot(cbind(pfr.obj.t1$BetaHat[[1]], pfr.obj.t1$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA", xlab="Location", ylim=ran)

abline(h=0, col="blue")
matplot(cbind(pfr.obj.t2$BetaHat[[1]], pfr.obj.t2$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST", xlab="Location", ylim=ran)

abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[1]], pfr.obj.t3$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA - mult.", xlab="Location", ylim=ran)

abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[2]], pfr.obj.t3$Bounds[[2]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST - mult.", xlab="Location", ylim=ran)

abline(h=0, col="blue")

##
use baseline data to regress continuous outcomes on functional
predictors (continuous outcomes only recorded for case == 1)
##

data(DTI)

subset data as needed for this example
cca = DTI$cca[which(DTI$visit ==1 & DTI$case == 1),]
rcst = DTI$rcst[which(DTI$visit ==1 & DTI$case == 1),]
DTI = DTI[which(DTI$visit ==1 & DTI$case == 1),]
note there is missingness in the functional predictors

pfr_old 125

apply(is.na(cca), 2, mean)
apply(is.na(rcst), 2, mean)

fit two models with single functional predictors and plot the results
fit.cca = pfr(Y=DTI$pasat, funcs = cca, kz=10, kb=50, nbasis=20)
fit.rcst = pfr(Y=DTI$pasat, funcs = rcst, kz=10, kb=50, nbasis=20)

par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA")

matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST")

fit a model with two functional predictors and plot the results
fit.cca.rcst = pfr(Y=DTI$pasat, funcs = list(cca, rcst), kz=10, kb=30, nbasis=20)

par(mfrow = c(1,2))
matplot(cbind(fit.cca.rcst$BetaHat[[1]], fit.cca.rcst$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA")

matplot(cbind(fit.cca.rcst$BetaHat[[2]], fit.cca.rcst$Bounds[[2]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST")

##
use baseline data to regress binary case-status outcomes on
functional predictors
##

data(DTI)

subset data as needed for this example
cca = DTI$cca[which(DTI$visit == 1),]
rcst = DTI$rcst[which(DTI$visit == 1),]
DTI = DTI[which(DTI$visit == 1),]

fit two models with single functional predictors and plot the results
fit.cca = pfr(Y=DTI$case, funcs = cca, family = "binomial")
fit.rcst = pfr(Y=DTI$case, funcs = rcst, family = "binomial")

par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA")

matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST")

##
######### Octane Data Example #########
##

126 plot.fosr

data(gasoline)
Y = gasoline$octane
funcs = gasoline$NIR
wavelengths = as.matrix(2*450:850)

fit the model using pfr and the smoothing option "fpca.face"
fit = pfr(Y=Y, funcs=funcs, kz=15, kb=50,nbasis=35,smooth.option="fpca.face")

matplot(wavelengths, cbind(fit$BetaHat[[1]], fit$Bounds[[1]]),
type='l', lwd=c(2,1,1), lty=c(1,2,2), xlab = "Wavelengths",
ylab = "Coefficient Function", col=1)

End(Not run)

plot.fosr Default plotting of function-on-scalar regression objects

Description

Plots the coefficient function estimates produced by fosr().

Usage

S3 method for class 'fosr'
plot(
x,
split = NULL,
titles = NULL,
xlabel = "",
ylabel = "Coefficient function",
set.mfrow = TRUE,
...

)

Arguments

x an object of class "fosr".

split value, or vector of values, at which to divide the set of coefficient functions into
groups, each plotted on a different scale. E.g., if set to 1, the first function is
plotted on one scale, and all others on a different (common) scale. If NULL, all
functions are plotted on the same scale.

titles character vector of titles for the plots produced, e.g., names of the corresponding
scalar predictors.

xlabel label for the x-axes of the plots.

ylabel label for the y-axes of the plots.

plot.fosr.vs 127

set.mfrow logical value: if TRUE, the function will try to set an appropriate value of the
mfrow parameter for the plots. Otherwise you may wish to set mfrow outside the
function call.

... graphical parameters (see par) for the plot.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>

See Also

fosr, which includes examples.

plot.fosr.vs Plot for Function-on Scalar Regression with variable selection

Description

Given a "fosr.vs" object, produces a figure of estimated coefficient functions.

Usage

S3 method for class 'fosr.vs'
plot(x, ...)

Arguments

x an object of class "fosr.vs".

... additional arguments.

Value

a figure of estimated coefficient functions.

Author(s)

Yakuan Chen <yc2641@cumc.columbia.edu>

See Also

fosr.vs

128 plot.fpcr

Examples

Not run:
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)

set.seed(100)

X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
plot(fit.mcp)

End(Not run)

plot.fpcr Default plotting for functional principal component regression output

Description

Inputs an object created by fpcr, and plots the estimated coefficient function.

Usage

S3 method for class 'fpcr'

plot.fpcr 129

plot(
x,
se = TRUE,
col = 1,
lty = c(1, 2, 2),
xlab = "",
ylab = "Coefficient function",
...

)

Arguments

x an object of class "fpcr".

se if TRUE (the default), upper and lower lines are added at 2 standard errors (in
the Bayesian sense; see Wood, 2006) above and below the coefficient function
estimate. If a positive number is supplied, the standard error is instead multiplied
by this number.

col color for the line(s). This should be either a number, or a vector of length 3 for
the coefficient function estimate, lower bound, and upper bound, respectively.

lty line type(s) for the coefficient function estimate, lower bound, and upper bound.

xlab, ylab x- and y-axis labels.

... other arguments passed to the underlying plotting function.

Value

None; only a plot is produced.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>

References

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca Raton, FL: Chap-
man & Hall.

See Also

fpcr, which includes an example.

130 plot.lpeer

plot.lpeer Plotting of estimated regression functions obtained through lpeer()

Description

Plots the estimate of components of estimated regression function obtained from an lpeer object
along with pointwise confidence bands.

Usage

S3 method for class 'lpeer'
plot(x, conf = 0.95, ...)

Arguments

x object of class "lpeer".
conf pointwise confidence level.
... additional arguments passed to plot.

Details

Pointwise confidence interval is displayed only if the user set se=T in the call to lpeer, and does
not reflect any multiplicity correction.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu>

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with
structured penalties. (Please contact J. Harezlak at <harezlak@iupui.edu>.)
Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models
- partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323–353.

See Also

peer, lpeer, plot.peer

Examples

Not run:
data(DTI)
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]
fit.cca.lpeer1 = lpeer(Y=DTI$pasat, t=DTI$visit, subj=DTI$ID, funcs = cca)
plot(fit.cca.lpeer1)

End(Not run)

plot.peer 131

plot.peer Plotting of estimated regression functions obtained through peer()

Description

Plots the estimate of components of estimated regression function obtained from a peer object
along with pointwise confidence bands.

Usage

S3 method for class 'peer'
plot(
x,
conf = 0.95,
ylab = "Estimated regression function",
main = expression(gamma),
...

)

Arguments

x object of class "peer".

conf pointwise confidence level.

ylab y-axis label.

main title for the plot.

... additional arguments passed to plot.

Details

Pointwise confidence interval is displayed only if the user set se=T in the call to peer, and does not
reflect any multiplicity correction.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu>

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with
structured penalties. (Please contact J. Harezlak at <harezlak@iupui.edu>.)

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models
- partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323–353.

See Also

peer, lpeer, plot.lpeer

132 plot.pfr

Examples

See example in peer()

plot.pffr Plot a pffr fit

Description

Plot a fitted pffr-object. Simply dispatches to plot.gam.

Usage

S3 method for class 'pffr'
plot(x, ...)

Arguments

x a fitted pffr-object

... arguments handed over to plot.gam

Value

This function only generates plots.

Author(s)

Fabian Scheipl

plot.pfr Plot a pfr object

Description

This function plots the smooth coefficients of a pfr object. These include functional coefficients as
well as any smooths of scalar covariates. The function dispatches to pfr_plot.gam, which is our
local copy of plot.gam with some minor changes.

Usage

S3 method for class 'pfr'
plot(x, Qtransform = FALSE, ...)

predict.fbps 133

Arguments

x a fitted pfr-object

Qtransform For additive functional terms, TRUE indicates the coefficient should be plotted on
the quantile-transformed scale, whereas FALSE indicates the scale of the original
data. Note this is different from the Qtransform arguemnt of af, which specifies
the scale on which the term is fit.

... arguments handed over to plot.gam

Value

This function’s main purpose is its side effect of generating plots. It also silently returns a list of the
data used to produce the plots, which can be used to generate customized plots.

Author(s)

Jonathan Gellar

See Also

af, pfr

predict.fbps Prediction for fast bivariate P-spline (fbps)

Description

Produces predictions given a fbps object and new data

Usage

S3 method for class 'fbps'
predict(object, newdata, ...)

Arguments

object an object returned by fbps

newdata a data frame or list consisting of x and z values for which predicted values are
desired. vectors of x and z need to be of the same length.

... additional arguments.

Value

A list with components

x a vector of x given in newdata

z a vector of z given in newdata

fitted.values a vector of fitted values corresponding to x and z given in newdata

134 predict.fbps

Author(s)

Luo Xiao <lxiao@jhsph.edu>

References

Xiao, L., Li, Y., and Ruppert, D. (2013). Fast bivariate P-splines: the sandwich smoother. Journal
of the Royal Statistical Society: Series B, 75(3), 577–599.

Examples

##########################
True function
##########################
n1 <- 60
n2 <- 80
x <- (1: n1)/n1-1/2/n1
z <- (1: n2)/n2-1/2/n2
MY <- array(0,c(length(x),length(z)))
sigx <- .3
sigz <- .4
for(i in 1: length(x))

for(j in 1: length(z))
{

#MY[i,j] <- .75/(pi*sigx*sigz) *exp(-(x[i]-.2)^2/sigx^2-(z[j]-.3)^2/sigz^2)
#MY[i,j] <- MY[i,j] + .45/(pi*sigx*sigz) *exp(-(x[i]-.7)^2/sigx^2-(z[j]-.8)^2/sigz^2)
MY[i,j] = sin(2*pi*(x[i]-.5)^3)*cos(4*pi*z[j])

}

##########################
Observed data
##########################
sigma <- 1
Y <- MY + sigma*rnorm(n1*n2,0,1)

##########################
Estimation
##########################
est <- fbps(Y,list(x=x,z=z))
mse <- mean((est$Yhat-MY)^2)
cat("mse of fbps is",mse,"\n")
cat("The smoothing parameters are:",est$lambda,"\n")

##
########## Compare the estimated surface with the true surface #########
##

par(mfrow=c(1,2))
persp(x,z,MY,zlab="f(x,z)",zlim=c(-1,2.5), phi=30,theta=45,expand=0.8,r=4,

col="blue",main="True surface")
persp(x,z,est$Yhat,zlab="f(x,z)",zlim=c(-1,2.5),phi=30,theta=45,

expand=0.8,r=4,col="red",main="Estimated surface")

predict.fgam 135

##########################
prediction
##########################

1. make prediction with predict.fbps() for all pairs of x and z given in the original data
(it's expected to have same results as Yhat obtianed using fbps() above)
newdata <- list(x= rep(x, length(z)), z = rep(z, each=length(x)))
pred1 <- predict(est, newdata=newdata)$fitted.values
pred1.mat <- matrix(pred1, nrow=length(x))
par(mfrow=c(1,2))
image(pred1.mat); image(est$Yhat)
all.equal(as.numeric(pred1.mat), as.numeric(est$Yhat))

2. predict for pairs of first 10 x values and first 5 z values
newdata <- list(x= rep(x[1:10], 5), z = rep(z[1:5], each=10))
pred2 <- predict(est, newdata=newdata)$fitted.values
pred2.mat <- matrix(pred2, nrow=10)
par(mfrow=c(1,2))
image(pred2.mat); image(est$Yhat[1:10,1:5])
all.equal(as.numeric(pred2.mat), as.numeric(est$Yhat[1:10,1:5]))
3. predict for one pair
newdata <- list(x=x[5], z=z[3])
pred3 <- predict(est, newdata=newdata)$fitted.values
all.equal(as.numeric(pred3), as.numeric(est$Yhat[5,3]))

predict.fgam Prediction from a fitted FGAM model

Description

Takes a fitted fgam-object produced by fgam and produces predictions given a new set of values for
the model covariates or the original values used for the model fit. Predictions can be accompanied
by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper
function for predict.gam()

Usage

S3 method for class 'fgam'
predict(
object,
newdata,
type = "response",
se.fit = FALSE,
terms = NULL,
PredOutOfRange = FALSE,
...

)

136 predict.fgam

Arguments

object a fitted fgam object as produced by fgam

newdata a named list containing the values of the model covariates at which predictions
are required. If this is not provided then predictions corresponding to the origi-
nal data are returned. All variables provided to newdata should be in the format
supplied to fgam, i.e., functional predictors must be supplied as matrices with
each row corresponding to one observed function. Index variables for the func-
tional covariates are reused from the fitted model object or alternatively can be
supplied as attributes of the matrix of functional predictor values. Any variables
in the model not specified in newdata are set to their average values from the
data supplied during fitting the model

type character; see predict.gam for details

se.fit logical; see predict.gam for details

terms character see predict.gam for details

PredOutOfRange logical; if this argument is true then any functional predictor values in newdata
corresponding to fgam terms that are greater[less] than the maximum[minimum]
of the domain of the marginal basis for the rows of the tensor product smooth
are set to the maximum[minimum] of the domain. If this argument is false,
attempting to predict a value of the functional predictor outside the range of this
basis produces an error

... additional arguments passed on to predict.gam

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se
== TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type ==
"terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response
for newdata containing the linear predictor and its se for each term

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

See Also

fgam, predict.gam

Examples

######### Octane data example #########
data(gasoline)
N <- length(gasoline$octane)
wavelengths = 2*450:850
nir = matrix(NA, 60,401)
test <- sample(60,20)
for (i in 1:60) nir[i,] = gasoline$NIR[i,] # changes class from AsIs to matrix
y <- gasoline$octane
#fit <- fgam(y~af(nir,xind=wavelengths,splinepars=list(k=c(6,6),m=list(c(2,2),c(2,2)))),

predict.fosr 137

subset=(1:N)[-test])
#preds <- predict(fit,newdata=list(nir=nir[test,]),type='response')
#plot(preds,y[test])
#abline(a=0,b=1)

predict.fosr Prediction from a fitted bayes_fosr model

Description

Takes a fitted fosr-object produced by bayes_fosr and produces predictions given a new set of
values for the model covariates or the original values used for the model fit.

Usage

S3 method for class 'fosr'
predict(object, newdata, ...)

Arguments

object a fitted fosr object as produced by bayes_fosr

newdata a named list containing the values of the model covariates at which predictions
are required. If this is not provided then predictions corresponding to the original
data are returned. All variables provided to newdata should be in the format
supplied to the model fitting function.

... additional (unused) arguments

Value

...

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

See Also

bayes_fosr

Examples

Not run:
library(reshape2)
library(dplyr)
library(ggplot2)

Cross-sectional real-data example

138 predict.fosr.vs

organize data
data(DTI)
DTI = subset(DTI, select = c(cca, case, pasat))
DTI = DTI[complete.cases(DTI),]
DTI$gender = factor(sample(c("male","female"), dim(DTI)[1], replace = TRUE))
DTI$status = factor(sample(c("RRMS", "SPMS", "PPMS"), dim(DTI)[1], replace = TRUE))

fit models
VB = bayes_fosr(cca ~ pasat, data = DTI, Kp = 4, Kt = 10)

obtain predictions
pred = predict(VB, sample_n(DTI, 10))

End(Not run)

predict.fosr.vs Prediction for Function-on Scalar Regression with variable selection

Description

Given a "fosr.vs" object and new data, produces fitted values.

Usage

S3 method for class 'fosr.vs'
predict(object, newdata = NULL, ...)

Arguments

object an object of class "fosr.vs".

newdata a data frame that contains the values of the model covariates at which predictors
are required.

... additional arguments.

Value

fitted values.

Author(s)

Yakuan Chen <yc2641@cumc.columbia.edu>

See Also

fosr.vs

Predict.matrix.dt.smooth 139

Examples

Not run:
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)

set.seed(100)

X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
predicted.value = predict(fit.mcp, data[81:100,])

End(Not run)

Predict.matrix.dt.smooth

Predict.matrix method for dt basis

Description

Predict.matrix method for dt basis

Usage

S3 method for class 'dt.smooth'
Predict.matrix(object, data)

140 Predict.matrix.fpc.smooth

Arguments

object a dt.smooth object created by smooth.construct.dt.smooth.spec, see smooth.construct

data see smooth.construct

Value

design matrix for domain-transformed terms

Author(s)

Jonathan Gellar

Predict.matrix.fpc.smooth

mgcv-style constructor for prediction of FPC terms

Description

mgcv-style constructor for prediction of FPC terms

Usage

S3 method for class 'fpc.smooth'
Predict.matrix(object, data)

Arguments

object a fpc.smooth object created by smooth.construct.fpc.smooth.spec, see
smooth.construct

data see smooth.construct

Value

design matrix for FPC terms

Author(s)

Jonathan Gellar

Predict.matrix.pcre.random.effect 141

Predict.matrix.pcre.random.effect

mgcv-style constructor for prediction of PC-basis functional random
effects

Description

mgcv-style constructor for prediction of PC-basis functional random effects

Usage

S3 method for class 'pcre.random.effect'
Predict.matrix(object, data)

Arguments

object a smooth specification object, see smooth.construct

data see smooth.construct

Value

design matrix for PC-based functional random effects

Author(s)

Fabian Scheipl; adapted from ’Predict.matrix.random.effect’ by S.N. Wood.

Predict.matrix.peer.smooth

mgcv-style constructor for prediction of PEER terms

Description

mgcv-style constructor for prediction of PEER terms

Usage

S3 method for class 'peer.smooth'
Predict.matrix(object, data)

Arguments

object a peer.smooth object created by smooth.construct.peer.smooth.spec, see
smooth.construct

data see smooth.construct

142 predict.pffr

Value

design matrix for PEER terms

Author(s)

Jonathan Gellar

Predict.matrix.pi.smooth

Predict.matrix method for pi basis

Description

Predict.matrix method for pi basis

Usage

S3 method for class 'pi.smooth'
Predict.matrix(object, data)

Arguments

object a pi.smooth object created by smooth.construct.pi.smooth.spec, see smooth.construct

data see smooth.construct

Value

design matrix for PEER terms

Author(s)

Jonathan Gellar

predict.pffr Prediction for penalized function-on-function regression

Description

Takes a fitted pffr-object produced by pffr() and produces predictions given a new set of values
for the model covariates or the original values used for the model fit. Predictions can be accom-
panied by standard errors, based on the posterior distribution of the model coefficients. This is a
wrapper function for predict.gam().

predict.pffr 143

Usage

S3 method for class 'pffr'
predict(object, newdata, reformat = TRUE, type = "link", se.fit = FALSE, ...)

Arguments

object a fitted pffr-object

newdata A named list (or a data.frame) containing the values of the model covariates
at which predictions are required. If no newdata is provided then predictions
corresponding to the original data are returned. If newdata is provided then
it must contain all the variables needed for prediction, in the format supplied
to pffr, i.e., functional predictors must be supplied as matrices with each row
corresponding to one observed function. See Details for more on index variables
and prediction for models fit on irregular or sparse data.

reformat logical, defaults to TRUE. Should predictions be returned in matrix form (de-
fault) or in the long vector shape returned by predict.gam()?

type see predict.gam() for details. Note that type == "lpmatrix" will force reformat
to FALSE.

se.fit see predict.gam()

... additional arguments passed on to predict.gam()

Details

Index variables (i.e., evaluation points) for the functional covariates are reused from the fitted model
object and cannot be supplied with newdata. Prediction is always for the entire index range of the
responses as defined in the original fit. If the original fit was performed on sparse or irregular,
non-gridded response data supplied via pffr’s ydata-argument and no newdata was supplied, this
function will simply return fitted values for the original evaluation points of the response (in list
form). If the original fit was performed on sparse or irregular data and newdata was supplied, the
function will return predictions on the grid of evaluation points given in object$pffr$yind.

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se ==
TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type ==
"terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response
for newdata containing the linear predictor and its se for each term.

Author(s)

Fabian Scheipl

See Also

predict.gam()

144 predict.pfr

predict.pfr Prediction from a fitted pfr model

Description

Takes a fitted pfr-object produced by pfr and produces predictions given a new set of values for
the model covariates or the original values used for the model fit. Predictions can be accompanied
by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper
function for predict.gam()

Usage

S3 method for class 'pfr'
predict(
object,
newdata,
type = "response",
se.fit = FALSE,
terms = NULL,
PredOutOfRange = FALSE,
...

)

Arguments

object a fitted pfr object as produced by pfr

newdata a named list containing the values of the model covariates at which predictions
are required. If this is not provided then predictions corresponding to the origi-
nal data are returned. All variables provided to newdata should be in the format
supplied to pfr, i.e., functional predictors must be supplied as matrices with
each row corresponding to one observed function. Index variables for the func-
tional covariates are reused from the fitted model object or alternatively can be
supplied as attributes of the matrix of functional predictor values. Any variables
in the model not specified in newdata are set to their average values from the
data supplied during fitting the model

type character; see predict.gam for details

se.fit logical; see predict.gam for details

terms character see predict.gam for details

PredOutOfRange logical; if this argument is true then any functional predictor values in newdata
corresponding to pfr terms that are greater[less] than the maximum[minimum]
of the domain of the marginal basis for the rows of the tensor product smooth
are set to the maximum[minimum] of the domain. If this argument is false,
attempting to predict a value of the functional predictor outside the range of this
basis produces an error

... additional arguments passed on to predict.gam

print.summary.pffr 145

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se
== TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type ==
"terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response
for newdata containing the linear predictor and its se for each term

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

See Also

pfr, predict.gam

Examples

######### Octane data example #########
data(gasoline)
N <- length(gasoline$octane)
wavelengths = 2*450:850
nir = matrix(NA, 60,401)
test <- sample(60,20)
for (i in 1:60) nir[i,] = gasoline$NIR[i,] # changes class from AsIs to matrix
y <- gasoline$octane
#fit <- pfr(y~af(nir,argvals=wavelengths,k=c(6,6), m=list(c(2,2),c(2,2))),

subset=(1:N)[-test])
#preds <- predict(fit,newdata=list(nir=nir[test,]),type='response')
#plot(preds,y[test])
#abline(a=0,b=1)

print.summary.pffr Print method for summary of a pffr fit

Description

Pretty printing for a summary.pffr-object. See print.summary.gam() for details.

Usage

S3 method for class 'summary.pffr'
print(
x,
digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),
...

)

146 pwcv

Arguments

x a fitted pffr-object

digits controls number of digits printed in output.

signif.stars Should significance stars be printed alongside output?

... not used

Value

A summary.pffr object

Author(s)

Fabian Scheipl, adapted from print.summary.gam() by Simon Wood, Henric Nilsson

pwcv Pointwise cross-validation for function-on-scalar regression

Description

Estimates prediction error for a function-on-scalar regression model by leave-one-function-out cross-
validation (CV), at each of a specified set of points.

Usage

pwcv(
fdobj,
Z,
L = NULL,
lambda,
eval.pts = seq(min(fdobj$basis$range), max(fdobj$basis$range), length.out = 201),
scale = FALSE

)

Arguments

fdobj a functional data object (class fd) giving the functional responses.

Z the model matrix, whose columns represent scalar predictors.

L a row vector or matrix of linear contrasts of the coefficient functions, to be re-
stricted to equal zero.

lambda smoothing parameter: either a nonnegative scalar or a vector, of length ncol(Z),
of nonnegative values.

eval.pts argument values at which the CV score is to be evaluated.

scale logical value or vector determining scaling of the matrix Z (see scale, to which
the value of this argument is passed).

qq.pffr 147

Details

Integrating the pointwise CV estimate over the function domain yields the cross-validated inte-
grated squared error, the standard overall model fit score returned by lofocv.

It may be desirable to derive the value of lambda from an appropriate call to fosr, as in the example
below.

Value

A vector of the same length as eval.pts giving the CV scores.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>

References

Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized
basis expansions. International Journal of Biostatistics, 6(1), article 28. Available at https://
pubmed.ncbi.nlm.nih.gov/21969982/

See Also

fosr, lofocv

qq.pffr QQ plots for pffr model residuals

Description

This is simply a wrapper for qq.gam().

Usage

qq.pffr(
object,
rep = 0,
level = 0.9,
s.rep = 10,
type = c("deviance", "pearson", "response"),
pch = ".",
rl.col = 2,
rep.col = "gray80",
...

)

https://pubmed.ncbi.nlm.nih.gov/21969982/
https://pubmed.ncbi.nlm.nih.gov/21969982/

148 quadWeights

Arguments

object a fitted pffr-object

rep How many replicate datasets to generate to simulate quantiles of the residual dis-
tribution. 0 results in an efficient simulation free method for direct calculation,
if this is possible for the object family.

level If simulation is used for the quantiles, then reference intervals can be provided
for the QQ-plot, this specifies the level. 0 or less for no intervals, 1 or more to
simply plot the QQ plot for each replicate generated.

s.rep how many times to randomize uniform quantiles to data under direct computa-
tion.

type what sort of residuals should be plotted? See residuals.gam.

pch plot character to use. 19 is good.

rl.col color for the reference line on the plot.

rep.col color for reference bands or replicate reference plots.

... extra graphics parameters to pass to plotting functions.

quadWeights Compute quadrature weights

Description

Utility function for numerical integration.

Usage

quadWeights(argvals, method = "trapezoidal")

Arguments

argvals function arguments.

method quadrature method. Can be either trapedoidal or midpoint.

Value

a vector of quadrature weights for the points supplied in argvals.

Author(s)

Clara Happ, with modifications by Philip Reiss

re 149

re Random effects constructor for fgam

Description

Sets up a random effect for the levels of x. Use the by-argument to request random slopes.

Usage

re(x, ...)

Arguments

x a grouping variable: must be a factor

... further arguments handed over to s, see random.effects

Details

See random.effects in mgcv.

See Also

random.effects

residuals.pffr Obtain residuals and fitted values for a pffr models

Description

See predict.pffr for alternative options to extract estimated values from a pffr object. "Fitted
values" here refers to the estimated additive predictor values, these will not be on the scale of the
response for models with link functions.

Usage

S3 method for class 'pffr'
residuals(object, reformat = TRUE, ...)

S3 method for class 'pffr'
fitted(object, reformat = TRUE, ...)

150 rlrt.pfr

Arguments

object a fitted pffr-object

reformat logical, defaults to TRUE. Should residuals be returned in n x yindex matrix
form (regular grid data) or, respectively, in the shape of the originally supplied
ydata argument (sparse/irregular data), or, if FALSE, simply as a long vector as
returned by resid.gam()?

... other arguments, passed to residuals.gam.

Value

A matrix or ydata-like data.frame or a vector of residuals / fitted values (see reformat-argument)

Author(s)

Fabian Scheipl

rlrt.pfr Likelihood Ratio Test and Restricted Likelihood Ratio Test for infer-
ence of functional predictors

Description

NOTE: this function is designed to work with pfr_old() rather than pfr(). Given a pfr object of fam-
ily="gaussian", tests whether the function is identically equal to its mean (constancy), or whether
the functional predictor significantly improves the model (inclusion). Based on zero-variance-
component work of Crainiceanu et al. (2004), Scheipl et al. (2008), and Swihart et al. (2012).

Usage

rlrt.pfr(pfr.obj = pfr.obj, test = NULL, ...)

Arguments

pfr.obj an object returned by pfr_old()

test "constancy" will test functional form of the coefficient function of the last func-
tion listed in funcs in pfr.obj against the null of a constant line: the average of
the functional predictor. "inclusion" will test functional form of the coefficient
function of the last function listed in funcs in pfr.obj against the null of 0: that
is, whether the functional predictor should be included in the model.

... additional arguments

rlrt.pfr 151

Details

A Penalized Functional Regression of family="gaussian" can be represented as a linear mixed model
dependent on variance components. Testing whether certain variance components and (potentially)
fixed effect coefficients are 0 correspond to tests of constancy and inclusion of functional predictors.

For rlrt.pfr, Restricted Likelihood Ratio Test is preferred for the constancy test as under the special
B-splines implementation of pfr for the coefficient function basis the test involves only the variance
component. Therefore, the constancy test is best for pfr objects with method="REML"; if the
method was something else, a warning is printed and the model refit with "REML" and a test is then
conducted.

For rlrt.pfr, the Likelihood Ratio Test is preferred for the inclusion test as under the special B-
splines implementation of pfr for the coefficient function basis the test involves both the variance
component and a fixed effect coefficient in the linear mixed model representation. Therefore, the in-
clusion test is best for pfr objects with method="ML"; if the method was something else, a warning
is printed and the model refit with "ML" and a test is then conducted.

Value

p.val the p-value for the full model (alternative) against the null specified by the test

test.stat the test statistic, see Scheipl et al. 2008 and Swihart et al 2012

ma the alternative model as fit with mgcv::gam

m0 the null model as fit with mgcv::gam

m the model containing only the parameters being tested as fit with mgcv::gam

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu> and Bruce Swihart <bswihart@jhsph.edu>

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional
regression. Journal of Computational and Graphical Statistics, 20(4), 830–851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional
regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical
Society: Series C, 61(3), 453–469.

Crainiceanu, C. and Ruppert, D. (2004) Likelihood ratio tests in linear mixed models with one
variance component. Journal of the Royal Statistical Society: Series B, 66, 165–185.

Scheipl, F. (2007) Testing for nonparametric terms and random effects in structured additive regres-
sion. Diploma thesis.\ https://www.statistik.lmu.de/~scheipl/downloads/DIPLOM.zip.

Scheipl, F., Greven, S. and Kuechenhoff, H (2008) Size and power of tests for a zero random effect
variance or polynomial regression in additive and linear mixed models. Computational Statistics &
Data Analysis, 52(7), 3283–3299.

Swihart, Bruce J., Goldsmith, Jeff; and Crainiceanu, Ciprian M. (2012). Testing for functional
effects. Johns Hopkins University Dept. of Biostatistics Working Paper 247. Available at https:
//biostats.bepress.com/jhubiostat/paper247/

https://biostats.bepress.com/jhubiostat/paper247/
https://biostats.bepress.com/jhubiostat/paper247/

152 rlrt.pfr

See Also

pfr, predict.pfr, package RLRsim

Examples

Not run:
##
######### DTI Data Example #########
##

##
For more about this example, see Swihart et al. 2012
Testing for Functional Effects
##

load and reassign the data;
data(DTI2)
O <- DTI2$pasat ## PASAT outcome
id <- DTI2$id ## subject id
W1 <- DTI2$cca ## Corpus Callosum
W2 <- DTI2$rcst ## Right corticospinal
V <- DTI2$visit ## visit

prep scalar covariate
visit.1.rest <- matrix(as.numeric(V > 1), ncol=1)
covar.in <- visit.1.rest

note there is missingness in the functional predictors
apply(is.na(W1), 2, mean)
apply(is.na(W2), 2, mean)

fit two univariate models, then one model with both functional predictors
pfr.obj.t1 <- pfr_old(Y = O, covariates=covar.in, funcs = list(W1), subj = id, kz = 10, kb = 50)
pfr.obj.t2 <- pfr_old(Y = O, covariates=covar.in, funcs = list(W2), subj = id, kz = 10, kb = 50)
pfr.obj.t3 <- pfr_old(Y = O, covariates=covar.in, funcs = list(W1, W2), subj = id, kz = 10, kb = 50)

plot the coefficient function and bounds
dev.new()
par(mfrow=c(2,2))
ran <- c(-2,.5)
matplot(cbind(pfr.obj.t1$BetaHat[[1]], pfr.obj.t1$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA", xlab="Location", ylim=ran)

abline(h=0, col="blue")
matplot(cbind(pfr.obj.t2$BetaHat[[1]], pfr.obj.t2$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST", xlab="Location", ylim=ran)

abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[1]], pfr.obj.t3$Bounds[[1]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA - mult.", xlab="Location", ylim=ran)

sff 153

abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[2]], pfr.obj.t3$Bounds[[2]]),

type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST - mult.", xlab="Location", ylim=ran)

abline(h=0, col="blue")

do some testing
t1 <- rlrt.pfr(pfr.obj.t1, "constancy")
t2 <- rlrt.pfr(pfr.obj.t2, "constancy")
t3 <- rlrt.pfr(pfr.obj.t3, "inclusion")

t1$test.stat
t1$p.val

t2$test.stat
t2$p.val

t3$test.stat
t3$p.val

do some testing with rlrt.pfr(); same as above but subj = NULL
pfr.obj.t1 <- pfr(Y = O, covariates=covar.in, funcs = list(W1), subj = NULL, kz = 10, kb = 50)
pfr.obj.t2 <- pfr(Y = O, covariates=covar.in, funcs = list(W2), subj = NULL, kz = 10, kb = 50)
pfr.obj.t3 <- pfr(Y = O, covariates=covar.in, funcs = list(W1, W2), subj = NULL, kz = 10, kb = 50)

t1 <- rlrt.pfr(pfr.obj.t1, "constancy")
t2 <- rlrt.pfr(pfr.obj.t2, "constancy")
t3 <- rlrt.pfr(pfr.obj.t3, "inclusion")

t1$test.stat
t1$p.val

t2$test.stat
t2$p.val

t3$test.stat
t3$p.val

End(Not run)

sff Construct a smooth function-on-function regression term

Description

Defines a term
∫ shi,i

slo,i
f(Xi(s), s, t)ds for inclusion in an mgcv::gam-formula (or bam or gamm or

gamm4:::gamm) as constructed by pffr. Defaults to a cubic tensor product B-spline with marginal
second differences penalties for f(Xi(s), s, t) and integration over the entire range [slo,i, shi,i] =

154 sff

[min(si),max(si)]. Can’t deal with any missing X(s), unequal lengths of Xi(s) not (yet?) possi-
ble. Unequal ranges for different Xi(s) should work. Xi(s) is assumed to be numeric.
sff() IS AN EXPERIMENTAL FEATURE AND NOT WELL TESTED YET – USE AT YOUR
OWN RISK.

Usage

sff(
X,
yind,
xind = seq(0, 1, l = ncol(X)),
basistype = c("te", "t2", "s"),
integration = c("simpson", "trapezoidal"),
L = NULL,
limits = NULL,
splinepars = list(bs = "ps", m = c(2, 2, 2))

)

Arguments

X an n by ncol(xind) matrix of function evaluations Xi(si1), . . . , Xi(siS); i =
1, . . . , n.

yind DEPRECATED matrix (or vector) of indices of evaluations of Yi(t); i.e. matrix
with rows (ti1, . . . , tiT); no longer used.

xind vector of indices of evaluations of Xi(s), i.e, (s1, . . . , sS)

basistype defaults to "te", i.e. a tensor product spline to represent f(Xi(s), t). Alterna-
tively, use "s" for bivariate basis functions (see s) or "t2" for an alternative
parameterization of tensor product splines (see t2).

integration method used for numerical integration. Defaults to "simpson"’s rule. Alterna-
tively and for non-equidistant grids, "trapezoidal".

L optional: an n by ncol(xind) giving the weights for the numerical integration
over s.

limits defaults to NULL for integration across the entire range of X(s), otherwise
specifies the integration limits shi,i, slo,i: either one of "s<t" or "s<=t" for
(shi,i, slo,i) = (0, t) or a function that takes s as the first and t as the second
argument and returns TRUE for combinations of values (s,t) if s falls into the
integration range for the given t. This is an experimental feature and not well
tested yet; use at your own risk.

splinepars optional arguments supplied to the basistype-term. Defaults to a cubic ten-
sor product B-spline with marginal second differences, i.e. list(bs="ps",
m=c(2,2,2)). See te or s for details

Value

a list containing

• call a "call" to te (or s, t2) using the appropriately constructed covariate and weight matrices
(see linear.functional.terms)

smooth.construct.dt.smooth.spec 155

• data a list containing the necessary covariate and weight matrices

Author(s)

Fabian Scheipl, based on Sonja Greven’s trick for fitting functional responses.

smooth.construct.dt.smooth.spec

Domain Transformation basis constructor

Description

The dt basis allows for any of the standard mgcv (or user-defined) bases to be aplied to a trans-
formed version of the original terms. Smooths may be of any number of terms. Transformations
are specified by supplying a function of any or all of the original terms. "by" variables are not
transformed.

Usage

S3 method for class 'dt.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a smooth specification object, generated by s(), te(), ti(), or t2(), with
bs="dt"

data a list containing just the data (including any by variable) required by this term,
with names corresponding to object$term (and object$by). The by variable
is the last element.

knots a list containing any knots supplied for basis setup - in same order and with same
names as data. Can be NULL.

Details

object should be creaated with an xt argument. For non-tensor-product smooths, this will be a list
with the following elements:

1. tf (required): a function or character string (or list of functions and/or character strings)
defining the coordinate transformations; see further details below.

2. bs (optional): character string indicating the bs for the basis applied to the transformed coor-
dinates; if empty, the appropriate defaults are used.

3. basistype (optional): character string indicating type of bivariate basis used. Options include
"s" (the default), "te", "ti", and "t2", which correspond to s, te, ti, and t2.

4. ... (optional): for tensor product smooths, additional arguments to the function specified by
basistype that are not available in s() can be included here, e.g. d, np, etc.

For tensor product smooths, we recommend using s() to set up the basis, and specifying the tensor
product using xt$basistype as described above. If the basis is set up using te(), then the variables
in object$term will be split up, meaning all transformation functions would have to be univariate.

156 smooth.construct.dt.smooth.spec

Value

An object of class "dt.smooth". This will contain all the elements associated with the smooth.construct
object from the inner smooth (defined by xt$bs), in addition to an xt element used by the Predict.matrix
method.

Transformation Functions

Let nterms = length(object$term). The tf element can take one of the following forms:

1. a function of nargs arguments, where nargs <= nterms. If nterms > 1, it is assumed that
this function will be applied to the first term of object$term. If all argument names of the
function are term names, then those arguments will correspond to those terms; otherwise, they
will correspond to the first nargs terms in object$term.

2. a character string corresponding to one of the built-in transformations (listed below).

3. A list of length ntfuncs, where ntfuncs<=nterms, containing either the functions or char-
acter strings described above. If this list is named with term names, then the transformation
functions will be applied to those terms; otherwise, they will be applied to the first ntfuncs
terms in object$term.

The following character strings are recognized as built-in transformations:

• "log": log transformation (univariate)

• "ecdf": empirical cumulative distribution function (univariate)

• "linear01": linearly rescale from 0 to 1 (univariate)

• "s-t": first term ("s") minus the second term ("t") (bivariate)

• "s/t": first term ("s") divided by the second term ("t") (bivariate)

• "QTransform": performs a time-specific ecdf transformation for a bivariate smooth, where
time is indicated by the first term, and x by the second term. Primarily for use with refund::af.

Some transformations rely on a fixed "pivot point" based on the data used to fit the model, e.g.
quantiles (such as the min or max) of this data. When making predictions based on these trans-
formations, the transformation function will need to know what the pivot points are, based on the
original (not prediction) data. In order to accomplish this, we allow the user to specify that they
want their transformation function to refer to the original data (as opposed to whatever the "current"
data is). This is done by appending a zero ("0") to the argument name.

For example, suppose you want to scale the term linearly so that the data used to define the basis
ranges from 0 to 1. The wrong way to define this transformation function: function(x) {(x -
min(x))/(max(x) - min(x))}. This function will result in incorrect predictions if the range of
data for which preditions are being made is not the same as the range of data that was used to
define the basis. The proper way to define this function: function(x) {(x - min(x0))/(max(x0)
- min(x0))}. By refering to x0 instead of x, you are indicating that you want to use the original
data instead of the current data. This may seem strange to refer to a variable that is not one of
the arguments, but the "dt" constructor explicitly places these variables in the environment of the
transformation function to make them available.

Author(s)

Jonathan Gellar

smooth.construct.fpc.smooth.spec 157

See Also

smooth.construct

smooth.construct.fpc.smooth.spec

Basis constructor for FPC terms

Description

Basis constructor for FPC terms

Usage

S3 method for class 'fpc.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a fpc.smooth.spec object, usually generated by a term s(x, bs="fpc"); see
Details.

data a list containing the data (including any by variable) required by this term, with
names corresponding to object$term (and object$by). Only the first element
of this list is used.

knots not used, but required by the generic smooth.construct.

Details

object must contain an xt element. This is a list that can contain the following elements:

X (required) matrix of functional predictors

method (required) the method of finding principal components; options include "svd" (uncon-
strained), "fpca.sc", "fpca.face", or "fpca.ssvd"

npc (optional) the number of PC’s to retain

pve (only needed if npc not supplied) the percent variance explained used to determine npc

penalize (required) if FALSE, the smoothing parameter is set to 0

bs the basis class used to pre-smooth X; default is "ps"

Any additional options for the pre-smoothing basis (e.g. k, m, etc.) can be supplied in the corre-
sponding elements of object. See s for a full list of options.

Value

An object of class "fpc.smooth". In addtional to the elements listed in smooth.construct, the
object will contain

sm the smooth that is fit in order to generate the basis matrix over object$term

V.A the matrix of principal components

158 smooth.construct.pco.smooth.spec

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com>

References

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional
partial least squares. Journal of the American Statistical Association, 102, 984-996.

See Also

fpcr

smooth.construct.pco.smooth.spec

Principal coordinate ridge regression

Description

Smooth constructor function for principal coordinate ridge regression fitted by gam. When the
principal coordinates are defined by a relevant distance among functional predictors, this is a form
of nonparametric scalar-on-function regression. Reiss et al. (2016) describe the approach and apply
it to dynamic time warping distances among functional predictors.

Usage

S3 method for class 'pco.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a smooth specification object, usually generated by a term of the form s(dummy,
bs="pco", k, xt); see Details.

data a list containing just the data.

knots IGNORED!

Value

An object of class pco.smooth. The resulting object has an xt element which contains details of
the multidimensional scaling, which may be interesting.

smooth.construct.pco.smooth.spec 159

Details

The constructor is not normally called directly, but is rather used internally by gam.

In a gam term of the above form s(dummy, bs="pco", k, xt),

• dummy is an arbitrary vector (or name of a column in data) whose length is the number of
observations. This is not actually used, but is required as part of the input to s. Note that if
multiple pco terms are used in the model, there must be multiple unique term names (e.g.,
"dummy1", "dummy2", etc).

• k is the number of principal coordinates (e.g., k=9 will give a 9-dimensional projection of the
data).

• xt is a list supplying the distance information, in one of two ways. (i) A matrix Dmat of
distances can be supplied directly via xt=list(D=Dmat,...). (ii) Alternatively, one can use
xt=list(realdata=..., dist_fn=..., ...) to specify a data matrix realdata and dis-
tance function dist_fn, whereupon a distance matrix dist_fn(realdata) is created.

The list xt also has the following optional elements:

• add: Passed to cmdscale when performing multidimensional scaling; for details, see the help
for that function. (Default FALSE.)

• fastcmd: if TRUE, multidimensional scaling is performed by cmdscale_lanczos, which uses
Lanczos iteration to eigendecompose the distance matrix; if FALSE, MDS is carried out by
cmdscale. Default is FALSE, to use cmdscale.

Author(s)

David L Miller, based on code from Lan Huo and Phil Reiss

References

Reiss, P. T., Miller, D. L., Wu, P.-S., and Wen-Yu Hua, W.-Y. Penalized nonparametric scalar-on-
function regression via principal coordinates. Under revision. Available at https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC5714326/.

Examples

Not run:
a simulated example
library(refund)
library(mgcv)
require(dtw)

First generate the data
Xnl <- matrix(0, 30, 101)
set.seed(813)
tt <- sort(sample(1:90, 30))
for(i in 1:30){

Xnl[i, tt[i]:(tt[i]+4)] <- -1
Xnl[i, (tt[i]+5):(tt[i]+9)] <- 1

}

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714326/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714326/

160 smooth.construct.pco.smooth.spec

X.toy <- Xnl + matrix(rnorm(30*101, ,0.05), 30)
y.toy <- tt + rnorm(30, 0.05)
y.rainbow <- rainbow(30, end=0.9)[(y.toy-min(y.toy))/

diff(range(y.toy))*29+1]

Display the toy data
par(mfrow=c(2, 2))
matplot((0:100)/100, t(Xnl[c(4, 25),]), type="l", xlab="t", ylab="",

ylim=range(X.toy), main="Noiseless functions")
matplot((0:100)/100, t(X.toy[c(4, 25),]), type="l", xlab="t", ylab="",

ylim=range(X.toy), main="Observed functions")
matplot((0:100)/100, t(X.toy), type="l", lty=1, col=y.rainbow, xlab="t",

ylab="", main="Rainbow plot")

Obtain DTW distances
D.dtw <- dist(X.toy, method="dtw", window.type="sakoechiba", window.size=5)

Compare PC vs. PCo ridge regression

matrix to store results
GCVmat <- matrix(NA, 15, 2)
dummy response variable
dummy <- rep(1,30)

loop over possible projection dimensions
for (k. in 1:15){

fit PC (m1) and PCo (m2) ridge regression
m1 <- gam(y.toy ~ s(dummy, bs="pco", k=k.,

xt=list(realdata=X.toy, dist_fn=dist)), method="REML")
m2 <- gam(y.toy ~ s(dummy, bs="pco", k=k., xt=list(D=D.dtw)), method="REML")
calculate and store GCV scores
GCVmat[k.,] <- length(y.toy) * c(sum(m1$residuals^2)/m1$df.residual^2,

sum(m2$residuals^2)/m2$df.residual^2)
}

plot the GCV scores per dimension for each model
matplot(GCVmat, lty=1:2, col=1, pch=16:17, type="o", ylab="GCV",

xlab="Number of principal components / coordinates",
main="GCV score")

legend("right", c("PC ridge regression", "DTW-based PCoRR"), lty=1:2, pch=16:17)

example of making a prediction

fit a model to the toy data
m <- gam(y.toy ~ s(dummy, bs="pco", k=2, xt=list(D=D.dtw)), method="REML")

first build the distance matrix
in this case we just subsample the original matrix
see ?pco_predict_preprocess for more information on formatting this data
dist_list <- list(dummy = as.matrix(D.dtw)[, c(1:5,10:15)])

preprocess the prediction data
pred_data <- pco_predict_preprocess(m, newdata=NULL, dist_list)

smooth.construct.pcre.smooth.spec 161

make the prediction
p <- predict(m, pred_data)

check that these are the same as the corresponding fitted values
print(cbind(fitted(m)[c(1:5,10:15)],p))

End(Not run)

smooth.construct.pcre.smooth.spec

mgcv-style constructor for PC-basis functional random effects

Description

Sets up design matrix for functional random effects based on the PC scores of the covariance op-
erator of the random effect process. See smooth.construct.re.smooth.spec for more details on
mgcv-style smoother specification and pcre for the corresponding pffr()-formula wrapper.

Usage

S3 method for class 'pcre.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a smooth specification object, see smooth.construct

data see smooth.construct

knots see smooth.construct

Value

An object of class "random.effect". See smooth.construct for the elements that this object will
contain.

Author(s)

Fabian Scheipl; adapted from ’re’ constructor by S.N. Wood.

162 smooth.construct.peer.smooth.spec

smooth.construct.peer.smooth.spec

Basis constructor for PEER terms

Description

Smooth basis constructor to define structured penalties (Randolph et al., 2012) for smooth terms.

Usage

S3 method for class 'peer.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a peer.smooth.spec object, usually generated by a term s(x, bs="peer");
see Details.

data a list containing the data (including any by variable) required by this term, with
names corresponding to object$term (and object$by). Only the first element
of this list is used.

knots not used, but required by the generic smooth.construct.

Details

The smooth specification object, defined using s(), should contain an xt element. xt will be a list
that contains additional information needed to specify the penalty. The type of penalty is indicated
by xt$pentype. There are four types of penalties available:

1. xt$pentype=="RIDGE" for a ridge penalty, the default

2. xt$pentype=="D" for a difference penalty. The order of the difference penalty is specified by
the m argument of s().

3. xt$pentype=="DECOMP" for a decomposition-based penalty, bPQ + a(I − PQ), where PQ =
Qt(QQt)−1Q. The Q matrix must be specified by xt$Q, and the scalar a by xt$phia. The
number of columns of Q must be equal to the length of the data. Each row represents a basis
function where the functional predictor is expected to lie, according to prior belief.

4. xt$pentype=="USER" for a user-specified penalty matrix L, supplied by xt$L.

Value

An object of class "peer.smooth". See smooth.construct for the elements that this object will
contain.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu> and Jonathan Gellar

smooth.construct.pi.smooth.spec 163

References

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models
- partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

See Also

peer

smooth.construct.pi.smooth.spec

Parametric Interaction basis constructor

Description

The pi basis is appropriate for smooths of multiple variables. Its purpose is to parameterize the
way in which the basis changes with one of those variables. For example, suppose the smooth is
over three variables, x, y, and t, and we want to parameterize the effect of t. Then the pi basis
will assume f(x, y, t) =

∑
k gk(t) ∗ fk(x, y), where the gk(t) functions are pre-specified and the

fk(x, y) functions are estimated using a bivariate basis. An example of a parametric interaction is a
linear interaction, which would take the form f(x, y, t) = f1(x, y) + t ∗ f2(x, y).

Usage

S3 method for class 'pi.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a smooth specification object, generated by, e.g., s(x, y, t, bs="pi", xt=list(g=list(g1,
g2, g3))). For transformation functions g1, g2, and g3, see Details below.

data a list containing the variables of the smooth (x, y, and t above), as well as any
by variable.

knots a list containing any knots supplied for basis setup - in same order and with same
names as data. Can be NULL.

Details

All functions fk() are defined using the same basis set. Accordingly, they are penalized using a
single block-diagonal penalty matrix and one smoothing parameter. Future versions of this function
may be able to relax this assumption.

object should be defined (using s()) with an xt argument. This argument is a list that could
contain any of the following elements:

1. g: the functions gk(t), specified as described below.

2. bs: the basis code used for the functions fk(); defaults to thin-plate regression splines, which
is mgcv’s default. The same basis will be used for all k.

164 smooth.construct.pss.smooth.spec

3. idx: an integer index indicating which variable from object$term is to be parameterized,
i.e., the t variable; defaults to length(object$term)

4. mp: flag to indicate whether multiple penalties should be estimated, one for each fk(). Defaults
to TRUE. If FALSE, the penalties for each k are combined into a single block-diagonal penalty
matrix (with one smoothing parameter).

5. ...: further xt options to be passed onto the basis for fk().

xt$g can be entered in one of the following forms:

1. a list of functions of length k, where each function is of one argument (assumed to be t)

2. one of the following recognized character strings: "linear", indicating a linear interaction,
i.e. f(x, t) = f1(x)+t∗f2(x); "quadratic", indicating a quadratic interaction, i.e. f(x, t) =
f1(x)+t∗f2(x)+t2 ∗f3(x); or "none", indicating no interaction with t, i.e. f(x, t) = f1(x).

The only one of the above elements that is required is xt. If default values for bs, idx, and mp
are desired, xt may also be entered as the g element itself; i.e. xt=g, where g is either the list of
functions or an acceptable character string.

Additional arguments for the lower-dimensional basis over f_k may be entered using the corre-
sponding arguments of s(), e.g. k, m, sp, etc. For example, s(x, t, bs="pi", k=15, xt=list(g="linear",
bs="ps")) will define a linear interaction with t of a univariate p-spline basis of dimension 15 over
x.

Value

An object of class "pi.smooth". See smooth.construct for the elements it will contain.

Author(s)

Fabian Scheipl and Jonathan Gellar

smooth.construct.pss.smooth.spec

P-spline constructor with modified ’shrinkage’ penalty

Description

Construct a B-spline basis with a modified difference penalty of full rank (i.e., that also penalizes
low-order polynomials).

Usage

S3 method for class 'pss.smooth.spec'
smooth.construct(object, data, knots)

sofa 165

Arguments

object see smooth.construct. The shrinkage factor can be specified via objectxtshrink

data see smooth.construct.

knots see smooth.construct.

Details

This penalty-basis combination is useful to avoid non-identifiability issues for ff terms. See ’ts’ or
’cs’ in smooth.terms for similar "shrinkage penalties" for thin plate and cubic regression splines.
The basic idea is to replace the k-th zero eigenvalue of the original penalty by skνm, where s is the
shrinkage factor (defaults to 0.1) and νm is the smallest non-zero eigenvalue. See reference for the
original idea, implementation follows that in the ’ts’ and ’cs’ constructors (see smooth.terms).

Author(s)

Fabian Scheipl; adapted from ’ts’ and ’cs’ constructors by S.N. Wood.

References

Marra, G., & Wood, S. N. (2011). Practical variable selection for generalized additive models.
Computational Statistics & Data Analysis, 55(7), 2372-2387.

sofa SOFA (Sequential Organ Failure Assessment) Data

Description

A dataset containing the SOFA scores (Vincent et al, 1996). for 520 patients, hospitalized in the
intensive care unit (ICU) with Acute Lung Injury. Daily measurements are available for as long as
each one remains in the ICU. This is an example of variable-domain functional data, as described
by Gellar et al. (2014).

Usage

sofa

Format

A data frame with 520 rows (subjects) and 7 variables:

death binary indicator that the subject died in the ICU

SOFA 520 x 173 matrix in variable-domain format (a ragged array). Each column represents an
ICU day. Each row contains the SOFA scores for a subject, one per day, for as long as the
subject remained in the ICU. The remaining cells of each row are padded with NAs. SOFA
scores range from 0 to 24, increasing with severity of organ failure. Missing values during
one’s ICU stay have been imputed using LOCF.

166 summary.pffr

SOFA_raw Identical to the SOFA element, except that it contains some missing values during one’s
hospitalization. These missing values arise when a subject leaves the ICU temporarily, only
to be re-admitted. SOFA scores are not monitored outside the ICU.

los ICU length of stay, i.e., the number of days the patient remained in the ICU prior to death or
final discharge.

age Patient age

male Binary indicator for male gender

Charlson Charlson co-morbidity index, a measure of baseline health status (before hospitalization
and ALI).

Details

The data was collected as part of the Improving Care of ALI Patients (ICAP) study (Needham et
al., 2006). If you use this dataset as an example in written work, please cite the study protocol.

References

Vincent, JL, Moreno, R, Takala, J, Willatts, S, De Mendonca, A, Bruining, H, Reinhart, CK, Suter,
PM, Thijs, LG (1996). The SOFA (Sepsis related Organ Failure Assessment) score to describe
organ dysfunction/failure. Intensive Care Medicine, 22(7): 707-710.

Needham, D. M., Dennison, C. R., Dowdy, D. W., Mendez-Tellez, P. A., Ciesla, N., Desai, S. V.,
Sevransky, J., Shanholtz, C., Scharfstein, D., Herridge, M. S., and Pronovost, P. J. (2006). Study
protocol: The Improving Care of Acute Lung Injury Patients (ICAP) study. Critical Care (London,
England), 10(1), R9.

Gellar, Jonathan E., Elizabeth Colantuoni, Dale M. Needham, and Ciprian M. Crainiceanu. Variable-
Domain Functional Regression for Modeling ICU Data. Journal of the American Statistical Asso-
ciation, 109(508):1425-1439, 2014.

summary.pffr Summary for a pffr fit

Description

Take a fitted pffr-object and produce summaries from it. See summary.gam() for details.

Usage

S3 method for class 'pffr'
summary(object, ...)

Arguments

object a fitted pffr-object

... see summary.gam() for options.

summary.pfr 167

Value

A list with summary information, see summary.gam()

Author(s)

Fabian Scheipl, adapted from summary.gam() by Simon Wood, Henric Nilsson

summary.pfr Summary for a pfr fit

Description

Take a fitted pfr-object and produce summaries from it. See summary.gam() for details.

Usage

S3 method for class 'pfr'
summary(object, ...)

Arguments

object a fitted pfr-object

... see summary.gam() for options.

Details

This function currently simply strips the "pfr" class label and calls summary.gam.

Value

A list with summary information, see summary.gam()

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com>, Fabian Scheipl

168 vb_cs_fpca

vb_cs_fpca Cross-sectional FoSR using Variational Bayes and FPCA

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates
model parameters using a VB and estimates the residual covariance surface using FPCA.

Usage

vb_cs_fpca(
formula,
data = NULL,
verbose = TRUE,
Kt = 5,
Kp = 2,
alpha = 0.1,
Aw = NULL,
Bw = NULL,
Apsi = NULL,
Bpsi = NULL,
argvals = NULL

)

Arguments

formula a formula indicating the structure of the proposed model.

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

Kt number of spline basis functions used to estimate coefficient functions

Kp number of FPCA basis functions to be estimated

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

Aw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

Bw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

Apsi hyperparameter for inverse gamma controlling variance of spline terms for FPC
effects

Bpsi hyperparameter for inverse gamma controlling variance of spline terms for FPC
effects

argvals not currently implemented

vb_cs_wish 169

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

vb_cs_wish Cross-sectional FoSR using Variational Bayes and Wishart prior

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates
model parameters using VB and estimates the residual covariance surface using a Wishart prior.

Usage

vb_cs_wish(
formula,
data = NULL,
verbose = TRUE,
Kt = 5,
alpha = 0.1,
min.iter = 10,
max.iter = 50,
Aw = NULL,
Bw = NULL,
v = NULL

)

Arguments

formula a formula indicating the structure of the proposed model.

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

Kt number of spline basis functions used to estimate coefficient functions

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

min.iter minimum number of iterations of VB algorithm

max.iter maximum number of iterations of VB algorithm

170 vb_mult_fpca

Aw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects; if NULL, defaults to Kt/2.

Bw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects; if NULL, defaults to 1/2 tr(mu.q.beta of the model

v hyperparameter for inverse Wishart prior on residual covariance; if NULL, Psi
defaults to an FPCA decomposition of the residual covariance in which residuals
are estimated based on an OLS fit of the model (note the "nugget effect" on this
covariance is assumed to be constant over the time domain).

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

vb_mult_fpca Multilevel FoSR using Variational Bayes and FPCA

Description

Fitting function for function-on-scalar regression for multilevel data. This function estimates model
parameters using a VB and estimates the residual covariance surface using FPCA.

Usage

vb_mult_fpca(
formula,
data = NULL,
verbose = TRUE,
Kt = 5,
Kp = 2,
alpha = 0.1,
argvals = NULL

)

Arguments

formula a formula indicating the structure of the proposed model.

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

vb_mult_wish 171

Kt number of spline basis functions used to estimate coefficient functions

Kp number of FPCA basis functions to be estimated

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

argvals not currently implemented

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

vb_mult_wish Multilevel FoSR using Variational Bayes and Wishart prior

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates
model parameters using VB and estimates the residual covariance surface using a Wishart prior. If
prior hyperparameters are NULL they are estimated using the data.

Usage

vb_mult_wish(
formula,
data = NULL,
verbose = TRUE,
Kt = 5,
alpha = 0.1,
min.iter = 10,
max.iter = 50,
Az = NULL,
Bz = NULL,
Aw = NULL,
Bw = NULL,
v = NULL

)

172 vis.fgam

Arguments

formula a formula indicating the structure of the proposed model.

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-
cally the environment from which the function is called.

verbose logical defaulting to TRUE – should updates on progress be printed?

Kt number of spline basis functions used to estimate coefficient functions

alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

min.iter minimum number of iterations of VB algorithm

max.iter maximum number of iterations of VB algorithm

Az hyperparameter for inverse gamma controlling variance of spline terms for subject-
level effects

Bz hyperparameter for inverse gamma controlling variance of spline terms for subject-
level effects

Aw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

Bw hyperparameter for inverse gamma controlling variance of spline terms for population-
level effects

v hyperparameter for inverse Wishart prior on residual covariance

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using
Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65
215-236.

vis.fgam Visualization of FGAM objects

Description

Produces perspective or contour plot views of an estimated surface corresponding to af terms fit
using fgam or plots “slices” of the estimated surface or estimated second derivative surface with
one of its arguments fixed and corresponding twice-standard error “Bayesian” confidence bands
constructed using the method in Marra and Wood (2012). See the details.

vis.fgam 173

Usage

vis.fgam(
object,
af.term,
xval = NULL,
tval = NULL,
deriv2 = FALSE,
theta = 50,
plot.type = "persp",
ticktype = "detailed",
...

)

Arguments

object an fgam object, produced by fgam

af.term character; the name of the functional predictor to be plotted. Only important if
multiple af terms are fit. Defaults to the first af term in object$call

xval a number in the range of functional predictor to be plotted. The surface will be
plotted with the first argument of the estimated surface fixed at this value

tval a number in the domain of the functional predictor to be plotted. The surface
will be plotted with the second argument of the estimated surface fixed at this
value. Ignored if xval is specified

deriv2 logical; if TRUE, plot the estimated second derivative surface along with Bayesian
confidence bands. Only implemented for the "slices" plot from either xval or
tval being specified

theta numeric; viewing angle; see persp

plot.type one of "contour" (to use levelplot) or "persp" (to use persp). Ignored if
either xval or tval is specified

ticktype how to draw the tick marks if plot.type="persp". Defaults to "detailed"

... other options to be passed to persp, levelplot, or plot

Details

The confidence bands used when plotting slices of the estimated surface or second derivative sur-
face are the ones proposed in Marra and Wood (2012). These are a generalization of the "Bayesian"
intervals of Wahba (1983) with an adjustment for the uncertainty about the model intercept. The es-
timated covariance matrix of the model parameters is obtained from assuming a particular Bayesian
model on the parameters.

Value

Simply produces a plot

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com>

174 vis.fgam

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional gen-
eralized additive models. Journal of Computational and Graphical Statistics, 23(1), pp. 249-269.
Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

Marra, G., and Wood, S. N. (2012) Coverage properties of confidence intervals for generalized
additive model components. Scandinavian Journal of Statistics, 39(1), pp. 53–74.

Wabha, G. (1983) "Confidence intervals" for the cross-validated smoothing spline. Journal of the
Royal Statistical Society, Series B, 45(1), pp. 133–150.

See Also

vis.gam, plot.gam, fgam, persp, levelplot

Examples

################# DTI Example #####################
data(DTI)

only consider first visit and cases (since no PASAT scores for controls)
y <- DTI$pasat[DTI$visit==1 & DTI$case==1]
X <- DTI$cca[DTI$visit==1 & DTI$case==1,]

remove samples containing missing data
ind <- rowSums(is.na(X))>0

y <- y[!ind]
X <- X[!ind,]

fit the fgam using FA measurements along corpus
callosum as functional predictor with PASAT as response
using 8 cubic B-splines for each marginal bases with
third order marginal difference penalties
specifying gamma>1 enforces more smoothing when using GCV
to choose smoothing parameters
#fit <- fgam(y~af(X,splinepars=list(k=c(8,8),m=list(c(2,3),c(2,3)))),gamma=1.2)

contour plot of the fitted surface
#vis.fgam(fit,plot.type='contour')

similar to Figure 5 from McLean et al.
Bands seem too conservative in some cases
#xval <- runif(1, min(fit$fgam$ft[[1]]$Xrange), max(fit$fgam$ft[[1]]$Xrange))
#tval <- runif(1, min(fit$fgam$ft[[1]]$xind), max(fit$fgam$ft[[1]]$xind))
#par(mfrow=c(4, 1))
#vis.fgam(fit, af.term='X', deriv2=FALSE, xval=xval)
#vis.fgam(fit, af.term='X', deriv2=FALSE, tval=tval)
#vis.fgam(fit, af.term='X', deriv2=TRUE, xval=xval)
#vis.fgam(fit, af.term='X', deriv2=TRUE, tval=tval)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/

vis.pfr 175

vis.pfr Visualization of PFR objects

Description

Produces perspective or contour plot views of an estimated surface corresponding smooths over
two or more dimensions. Alternatively plots “slices” of the estimated surface or estimated second
derivative surface with one of its arguments fixed. Corresponding twice-standard error “Bayesian”
confidence bands are constructed using the method in Marra and Wood (2012). See the details.

Usage

vis.pfr(
object,
select = 1,
xval = NULL,
tval = NULL,
deriv2 = FALSE,
theta = 50,
plot.type = "persp",
ticktype = "detailed",
...

)

Arguments

object an pfr object, produced by pfr

select index for the smooth term to be plotted, according to its position in the model
formula (and in object$smooth). Not needed if only one multivariate term is
present.

xval a number in the range of functional predictor to be plotted. The surface will be
plotted with the first argument of the estimated surface fixed at this value

tval a number in the domain of the functional predictor to be plotted. The surface
will be plotted with the second argument of the estimated surface fixed at this
value. Ignored if xval is specified.

deriv2 logical; if TRUE, plot the estimated second derivative surface along with Bayesian
confidence bands. Only implemented for the "slices" plot from either xval or
tval being specified

theta numeric; viewing angle; see persp

plot.type one of "contour" (to use levelplot) or "persp" (to use persp). Ignored if
either xval or tval is specified

ticktype how to draw the tick marks if plot.type="persp". Defaults to "detailed"

... other options to be passed to persp, levelplot, or plot

176 vis.pfr

Details

The confidence bands used when plotting slices of the estimated surface or second derivative sur-
face are the ones proposed in Marra and Wood (2012). These are a generalization of the "Bayesian"
intervals of Wahba (1983) with an adjustment for the uncertainty about the model intercept. The es-
timated covariance matrix of the model parameters is obtained from assuming a particular Bayesian
model on the parameters.

Value

Simply produces a plot

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com>

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional gen-
eralized additive models. Journal of Computational and Graphical Statistics, 23(1), pp. 249-269.
Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

Marra, G., and Wood, S. N. (2012) Coverage properties of confidence intervals for generalized
additive model components. Scandinavian Journal of Statistics, 39(1), pp. 53–74.

Wabha, G. (1983) "Confidence intervals" for the cross-validated smoothing spline. Journal of the
Royal Statistical Society, Series B, 45(1), pp. 133–150.

See Also

vis.gam, plot.gam, pfr, persp, levelplot

Examples

################# DTI Example #####################
data(DTI)

only consider first visit and cases (since no PASAT scores for controls),
and remove missing data
DTI <- DTI[DTI$visit==1 & DTI$case==1 & complete.cases(DTI$cca),]

Fit the PFR using FA measurements along corpus
callosum as functional predictor with PASAT as response
using 8 cubic B-splines for each marginal bases with
third order marginal difference penalties.
Specifying gamma>1 enforces more smoothing when using GCV
to choose smoothing parameters
fit <- pfr(pasat ~ af(cca, basistype="te", k=c(8,8), m=list(c(2,3),c(2,3)), bs="ps"),

method="GCV.Cp", gamma=1.2, data=DTI)

contour plot of the fitted surface
vis.pfr(fit, plot.type='contour')

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/

Xt_siginv_X 177

similar to Figure 5 from McLean et al.
Bands seem too conservative in some cases
xval <- runif(1, min(fitpfrft[[1]]$Xrange), max(fit$pfr$ft[[1]]$Xrange))
tval <- runif(1, min(fitpfrft[[1]]$xind), max(fit$pfr$ft[[1]]$xind))
par(mfrow=c(2, 2))
vis.pfr(fit, deriv2=FALSE, xval=xval)
vis.pfr(fit, deriv2=FALSE, tval=tval)
vis.pfr(fit, deriv2=TRUE, xval=xval)
vis.pfr(fit, deriv2=TRUE, tval=tval)

Xt_siginv_X Internal computation function

Description

Internal function used compute the products in cross-sectional VB algorithm and Gibbs sampler

Usage

Xt_siginv_X(tx, siginv, y = NULL)

Arguments

tx transpose of the X design matrix

siginv inverse variance matrix

y outcome matrix. if NULL, function computes first product; if not, function com-
putes second product.

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

Index

∗ datasets
cd4, 14
DTI2, 24
gasoline, 74
sofa, 165

af, 4, 34, 35, 83, 88, 118, 119, 133, 172
af_old, 7
amc, 38

bam, 4, 8, 34, 46, 81, 83, 87, 111, 116, 118
bayes_fosr, 10, 137
boot, 18
boot.ci, 18

call, 25
ccb.fpc, 11
cd4, 14
cmdscale, 14, 15, 159
cmdscale_lanczos, 14, 159
coef.pffr, 15, 18, 111
coef.pfr (coefficients.pfr), 18
coefboot.pffr, 17
coefficients.pfr, 18
content, 20
COVID19, 21
create.prep.func, 5, 6, 22, 82

data.frame, 102
dist, 14
DTI, 23
DTI2, 24

ecdf, 9
expand.call, 25

f_sum, 72
f_sum2, 72
f_sum4, 73
f_trace, 73
family.mgcv, 113

fbps, 26, 133
fd, 5, 9, 36, 38, 41, 46, 47, 68, 81, 88, 105
ff, 28, 31, 111, 112, 116, 118, 165
ffpc, 29, 30, 111, 112
ffpcplot, 32
fgam, 8, 9, 34, 87, 88, 135, 136, 172–174
fitted.pffr, 111
fitted.pffr (residuals.pffr), 149
formula, 43
fosr, 36, 41, 42, 45, 46, 126, 127, 147
fosr.perm, 40
fosr.vs, 43, 127, 138
fosr2s, 45
fpc, 46, 118, 119
fpca.face, 23, 49, 65, 67
fpca.lfda, 52
fpca.sc, 23, 31, 38, 51, 59, 64–67, 117
fpca.ssvd, 23, 51, 63, 67
fpca2s, 51, 65, 65
fpcr, 48, 68, 74, 128, 129, 158

gam, 34, 37, 38, 50, 60, 69, 83, 87, 93, 101,
110, 111, 115, 116, 118, 119, 122,
158, 159

gam.check, 114
gamm, 4, 8, 34, 46, 81, 83, 87, 111, 116, 118
gamm4, 34, 60, 87, 111, 116, 118
gamObject, 16, 70
gasoline, 74
gibbs_cs_fpca, 75
gibbs_cs_wish, 76
gibbs_mult_fpca, 77
gibbs_mult_wish, 79
gls_cs, 80
grpreg, 44

jagam, 111

levelplot, 173–176
lf, 6, 9, 34, 35, 47, 48, 81, 85, 105, 118, 119

178

INDEX 179

lf.vd, 83, 118, 119
lf_old, 86
linear.functional.terms, 6, 9, 30, 83, 85,

88, 154
lme, 89, 108
lofocv, 37, 147
lpeer, 88, 130
lpfr, 93

match.call, 25
mfpca.face, 95
mfpca.sc, 97
model.matrix.pffr, 100, 111
mrf, 112

nearPD, 116

ols_cs, 100
optim, 50
optimize, 64

par, 41, 127
pca.fd, 38
pco, 101, 102
pco (smooth.construct.pco.smooth.spec),

158
pco_predict_preprocess, 101
pcre, 102, 111, 161
peer, 104, 118, 119, 131, 163
PEER.Sim, 106
peer_old, 105, 107
persp, 33, 173–176
pffr, 18, 28, 30, 31, 45, 46, 110, 115–117,

142, 148, 153
pffr.check, 111, 114
pffrGLS, 115
pffrSim, 117
pfr, 4, 6, 19, 23, 46, 81, 83, 85, 104, 106, 118,

133, 144, 145, 152, 175, 176
pfr_old, 120
plot, 130, 131, 173, 175
plot.fosr, 39, 126
plot.fosr.perm (fosr.perm), 40
plot.fosr.vs, 127
plot.fpcr, 128
plot.gam, 17, 132, 133, 174, 176
plot.lpeer, 130
plot.peer, 131
plot.pffr, 111, 132

plot.pfr, 132
poridge

(smooth.construct.pco.smooth.spec),
158

predict.fbps, 133
predict.fgam, 35, 135
predict.fosr, 137
predict.fosr.vs, 138
predict.gam, 16, 17, 100, 102, 135, 136,

142–145
Predict.matrix.dt.smooth, 139
Predict.matrix.fpc.smooth, 140
Predict.matrix.pco.smooth

(smooth.construct.pco.smooth.spec),
158

Predict.matrix.pcre.random.effect, 141
Predict.matrix.peer.smooth, 141
Predict.matrix.pi.smooth, 142
predict.pffr, 111, 142, 149
predict.pfr, 22, 123, 144, 152
print.summary.gam, 145, 146
print.summary.pffr, 145
pwcv, 146

Q (PEER.Sim), 106
qq.gam, 115, 147
qq.pffr, 111, 147
quadWeights, 148

random.effects, 149
re, 10, 34, 118, 119, 149
residuals.gam, 115, 148, 150
residuals.pffr, 111, 149
rlrt.pfr, 123, 150

s, 5, 6, 8, 29–31, 48, 81–84, 87, 118, 149, 154,
155, 157, 159

scale, 37, 146
sff, 111, 112, 153
slanczos, 14
smooth.basisPar, 8, 9, 87, 88
smooth.construct, 140–142, 156, 157, 161,

162, 164, 165
smooth.construct.dt.smooth.spec, 85,

140, 155
smooth.construct.fpc.smooth.spec, 48,

140, 157
smooth.construct.pco.smooth.spec, 14,

15, 102, 158

180 INDEX

smooth.construct.pcre.smooth.spec, 161
smooth.construct.peer.smooth.spec, 106,

141, 162
smooth.construct.pi.smooth.spec, 85,

142, 163
smooth.construct.pss.smooth.spec, 164
smooth.construct.re.smooth.spec, 161
smooth.terms, 4, 81, 83, 113, 165
sofa, 165
summary.gam, 166, 167
summary.pffr, 111, 146, 166
summary.pfr, 167
svd, 48

t2, 5, 8, 29, 30, 34, 111, 118, 154, 155
te, 6, 8, 29, 30, 34, 83, 84, 87, 118, 154, 155
ti, 111, 113, 155

vb_cs_fpca, 168
vb_cs_wish, 169
vb_mult_fpca, 170
vb_mult_wish, 171
vis.fgam, 35, 172
vis.gam, 174, 176
vis.pfr, 175

Xt_siginv_X, 177

	af
	af_old
	bayes_fosr
	ccb.fpc
	cd4
	cmdscale_lanczos
	coef.pffr
	coefboot.pffr
	coefficients.pfr
	content
	COVID19
	create.prep.func
	DTI
	DTI2
	expand.call
	fbps
	ff
	ffpc
	ffpcplot
	fgam
	fosr
	fosr.perm
	fosr.vs
	fosr2s
	fpc
	fpca.face
	fpca.lfda
	fpca.sc
	fpca.ssvd
	fpca2s
	fpcr
	f_sum
	f_sum2
	f_sum4
	f_trace
	gasoline
	gibbs_cs_fpca
	gibbs_cs_wish
	gibbs_mult_fpca
	gibbs_mult_wish
	gls_cs
	lf
	lf.vd
	lf_old
	lpeer
	lpfr
	mfpca.face
	mfpca.sc
	model.matrix.pffr
	ols_cs
	pco_predict_preprocess
	pcre
	peer
	PEER.Sim
	peer_old
	pffr
	pffr.check
	pffrGLS
	pffrSim
	pfr
	pfr_old
	plot.fosr
	plot.fosr.vs
	plot.fpcr
	plot.lpeer
	plot.peer
	plot.pffr
	plot.pfr
	predict.fbps
	predict.fgam
	predict.fosr
	predict.fosr.vs
	Predict.matrix.dt.smooth
	Predict.matrix.fpc.smooth
	Predict.matrix.pcre.random.effect
	Predict.matrix.peer.smooth
	Predict.matrix.pi.smooth
	predict.pffr
	predict.pfr
	print.summary.pffr
	pwcv
	qq.pffr
	quadWeights
	re
	residuals.pffr
	rlrt.pfr
	sff
	smooth.construct.dt.smooth.spec
	smooth.construct.fpc.smooth.spec
	smooth.construct.pco.smooth.spec
	smooth.construct.pcre.smooth.spec
	smooth.construct.peer.smooth.spec
	smooth.construct.pi.smooth.spec
	smooth.construct.pss.smooth.spec
	sofa
	summary.pffr
	summary.pfr
	vb_cs_fpca
	vb_cs_wish
	vb_mult_fpca
	vb_mult_wish
	vis.fgam
	vis.pfr
	Xt_siginv_X
	Index

